Predicting Air Pollution Using Simpson Integration

Authors

  • Karmilah UIN Siber Syekh Nurjati Cirebon
  • Nazwa Fahira UIN Siber Syekh Nurjati Cirebon

DOI:

https://doi.org/10.63876/ijtm.v2i3.82

Keywords:

Air Pollution, Air Quality Prediction, Simpson's Rule, Numerical Method, Data Interpolation

Abstract

Increasing air pollution, especially in urban areas, is a serious issue that has a negative impact on public health and the environment. Accurate prediction of air pollution levels is critical to supporting mitigation efforts and data-driven decision-making. This study aims to develop an air pollution prediction model using the Simpson Integration method, a numerical approach used to calculate integrals with a high degree of accuracy. The data used included concentrations of pollutants such as PM2.5, PM10, and NO2 taken from daily measurements for one year. This method utilizes an interpolation algorithm to model changes in pollutant concentrations as a function of time. Simpson integration is used to calculate the area under the daily pollutant curve that represents the accumulated exposure to air pollution. The results show that this method is able to provide accurate predictions with an average error rate of less than 5% compared to actual data. This model has advantages in computational efficiency over conventional methods such as simple linear regression analysis. These findings prove that Simpson Integration can be effectively applied in air quality prediction and provide important information for governments and the public. This system is expected to support the development of an air pollution early warning system to increase public awareness and help formulate more responsive environmental policies.

Downloads

Download data is not yet available.

References

T. Nakyai, M. Santasnachok, A. Thetkathuek, and N. Phatrabuddha, “Influence of Meteorological Factors on Air Pollution and Health Risks: A Comparative Analysis of Industrial and Urban Areas in Chonburi Province, Thailand,” Environ. Adv., p. 100608, Dec. 2024, doi: https://doi.org/10.1016/j.envadv.2024.100608.

Z. Liu, X. Wang, and Y. Wang, “Air pollution and perk consumption,” Int. Rev. Financ. Anal., vol. 96, p. 103688, Nov. 2024, doi: https://doi.org/10.1016/j.irfa.2024.103688.

R. Hoogerbrugge, S. van Ratingen, K. Siteur, and J. Wesseling, “Optimal measurement strategy for air quality combining official and low-cost measurements,” Atmos. Environ., p. 120990, Dec. 2024, doi: https://doi.org/10.1016/j.atmosenv.2024.120990.

J. LIANG, F. ZHAO, D. WU, and A. DING, “A numerical method for predicting bursting strength of composite rocket motor case considering filament winding process-induced stress,” Chinese J. Aeronaut., p. 103340, Dec. 2024, doi: https://doi.org/10.1016/j.cja.2024.103340.

S. I. Butt, A. Khan, and S. Tipurić-Spužević, “New fractal–fractional Simpson estimates for twice differentiable functions with applications,” Kuwait J. Sci., vol. 51, no. 2, p. 100205, Apr. 2024, doi: https://doi.org/10.1016/j.kjs.2024.100205.

K. Wang et al., “Calibrating a model of depth to water table using Fourier series and Simpson numerical integration,” J. Hydrol., vol. 620, p. 129516, May 2023, doi: https://doi.org/10.1016/j.jhydrol.2023.129516.

N. Antoni, “Analytical and numerical methods for the solution to the rigid punch contact integral equations,” J. Comput. Sci., vol. 85, p. 102492, Feb. 2025, doi: https://doi.org/10.1016/j.jocs.2024.102492.

S. A. Abdul Karim and O. Tamin, “Malaysia’s rainfall and Kalumpang agricultural station data for scattered data interpolation,” Data Br., vol. 56, p. 110840, Oct. 2024, doi: https://doi.org/10.1016/j.dib.2024.110840.

S. N. K. Vutla, T. S. Vasu, and J. P.V., “A computationally efficient Element Edge point numerical integration scheme in the meshless method framework for solving fracture problems,” Theor. Appl. Fract. Mech., vol. 134, p. 104704, Dec. 2024, doi: https://doi.org/10.1016/j.tafmec.2024.104704.

L. Wang et al., “A hybrid spatiotemporal model combining graph attention network and gated recurrent unit for regional composite air pollution prediction and collaborative control,” Sustain. Cities Soc., vol. 116, p. 105925, Dec. 2024, doi: https://doi.org/10.1016/j.scs.2024.105925.

W. D’Alessandro and I. Stevens, “Mature intuition and mathematical understanding,” J. Math. Behav., vol. 76, p. 101203, Dec. 2024, doi: https://doi.org/10.1016/j.jmathb.2024.101203.

J. Xie, X. Yan, B. Jiang, and L. Kong, “Statistical inference for smoothed quantile regression with streaming data,” J. Econom., p. 105924, Dec. 2024, doi: https://doi.org/10.1016/j.jeconom.2024.105924.

R. C. C. Lima et al., “A new proposal for energy efficiency in industrial manufacturing systems based on machine learning techniques,” J. Manuf. Syst., vol. 77, pp. 1062–1076, Dec. 2024, doi: https://doi.org/10.1016/j.jmsy.2024.10.025.

X. DU, D. GE, Z. DANG, and X. WANG, “Rapid Aerodynamic Estimation of Annular Wings Based on Multiple Linear Regression,” Aerosp. Sci. Technol., p. 109887, Dec. 2024, doi: https://doi.org/10.1016/j.ast.2024.109887.

S. Fortunati and L. Ortega, “On the efficiency of misspecified Gaussian inference in nonlinear regression: Application to time-delay and Doppler estimation,” Signal Processing, vol. 225, p. 109614, Dec. 2024, doi: https://doi.org/10.1016/j.sigpro.2024.109614.

H. B. Khanh, N. L. Duy, N. A. Tien, and N. H. D. Khang, “Comparison of conventional linear regression method and interpretable artificial neural network for copper determination using optical emission spectroscopy of solution cathode glow discharge,” Spectrochim. Acta Part B At. Spectrosc., vol. 219, p. 107000, Sep. 2024, doi: https://doi.org/10.1016/j.sab.2024.107000.

S. Bazm, P. Lima, and S. Nemati, “Analysis of the Euler and trapezoidal discretization methods for the numerical solution of nonlinear functional Volterra integral equations of Urysohn type,” J. Comput. Appl. Math., vol. 398, p. 113628, Dec. 2021, doi: https://doi.org/10.1016/j.cam.2021.113628.

K. U. Rehman, M. Y. Malik, W. Al-Kouz, and Z. Abdelmalek, “Heat transfer individualities due to evenly heated T-Shaped blade rooted in trapezium enclosure: Numerical analysis,” Case Stud. Therm. Eng., vol. 22, p. 100778, Dec. 2020, doi: https://doi.org/10.1016/j.csite.2020.100778.

M. M. da Silva, R. M. F. Silveira, G. G. da Cruz, K. A. M. de Azevedo, C. M. M. Bittar, and I. J. O. da Silva, “Acoustic-based models to assess herd-level calves’ emotional state: A machine learning approach,” Smart Agric. Technol., vol. 9, p. 100682, Dec. 2024, doi: https://doi.org/10.1016/j.atech.2024.100682.

F. A. R. D. Lima, M. G. F. de Moraes, A. G. Barreto, A. R. Secchi, M. A. Grover, and M. B. de Souza, “Applications of machine learning for modeling and advanced control of crystallization processes: Developments and perspectives,” Digit. Chem. Eng., p. 100208, Dec. 2024, doi: https://doi.org/10.1016/j.dche.2024.100208.

M. Suliman, M. Ibrahim, E. A. Algehyne, and V. Ali, “A study of an efficient numerical method for solving the generalized fractional reaction-diffusion model involving a distributed-order operator along with stability analysis,” Comput. Math. with Appl., vol. 180, pp. 61–75, Feb. 2025, doi: https://doi.org/10.1016/j.camwa.2024.12.006.

H. T. Workneh, X. Chen, Y. Ma, E. Bayable, and A. Dash, “Comparison of IDW, Kriging and orographic based linear interpolations of rainfall in six rainfall regimes of Ethiopia,” J. Hydrol. Reg. Stud., vol. 52, p. 101696, Apr. 2024, doi: https://doi.org/10.1016/j.ejrh.2024.101696.

Downloads

Published

2023-12-26

How to Cite

Karmilah, & Nazwa. (2023). Predicting Air Pollution Using Simpson Integration. International Journal of Technology and Modeling, 2(3), 156–163. https://doi.org/10.63876/ijtm.v2i3.82

Issue

Section

Articles