Efficient Resource Allocation in Cloud Computing Environments: A Modelling Perspective

Authors

  • Pooja Reddy SRM Institute of Science and Technology, Chennai, India
  • Akash Verma SRM Institute of Science and Technology, Chennai, India
  • Kunal Verma SRM Institute of Science and Technology, Chennai, India
  • Abhinav Singh SRM Institute of Science and Technology, Chennai, India
  • Aryan Soni SRM Institute of Science and Technology, Chennai, India

DOI:

https://doi.org/10.63876/ijtm.v2i2.124

Keywords:

Cloud Computing, Resource Allocation, Workload Management, Predictive Analysis, Service-Level Agreement (SLA), Dynamic Scheduling

Abstract

Efficient resource allocation remains a critical challenge in cloud computing environments due to the dynamic and heterogeneous nature of workloads and infrastructure. This paper presents a comprehensive modelling perspective to address the complexities of resource management, aiming to optimize performance while minimizing operational costs. We propose a flexible and scalable modelling framework that integrates workload characterization, predictive demand analysis, and optimization algorithms to support decision-making in resource allocation. The framework is validated through extensive simulations using real-world workload traces and benchmark scenarios. Results demonstrate significant improvements in resource utilization, energy efficiency, and service-level agreement (SLA) compliance compared to existing approaches. This study highlights the importance of model-driven strategies in enhancing the adaptability and efficiency of cloud resource management systems.

Downloads

Download data is not yet available.

References

S. S. Manvi and G. Krishna Shyam, “Resource management for Infrastructure as a Service (IaaS) in cloud computing: A survey,” J. Netw. Comput. Appl., vol. 41, pp. 424–440, May 2014, doi: https://doi.org/10.1016/j.jnca.2013.10.004.

B. Mohammed, B. Modu, K. M. Maiyama, H. Ugail, I. Awan, and M. Kiran, “Failure Analysis Modelling in an Infrastructure as a Service (Iaas) Environment,” Electron. Notes Theor. Comput. Sci., vol. 340, pp. 41–54, Oct. 2018, doi: https://doi.org/10.1016/j.entcs.2018.09.004.

S. H. H. Madni, M. S. A. Latiff, Y. Coulibaly, and S. M. Abdulhamid, “Resource scheduling for infrastructure as a service (IaaS) in cloud computing: Challenges and opportunities,” J. Netw. Comput. Appl., vol. 68, pp. 173–200, Jun. 2016, doi: https://doi.org/10.1016/j.jnca.2016.04.016.

F. Khoda Parast, C. Sindhav, S. Nikam, H. Izadi Yekta, K. B. Kent, and S. Hakak, “Cloud computing security: A survey of service-based models,” Comput. Secur., vol. 114, p. 102580, Mar. 2022, doi: https://doi.org/10.1016/j.cose.2021.102580.

A. Di Stefano, A. Di Stefano, and G. Morana, “Improving QoS through network isolation in PaaS,” Futur. Gener. Comput. Syst., vol. 131, pp. 91–105, Jun. 2022, doi: https://doi.org/10.1016/j.future.2022.01.010.

L. Clifton, N. Whitelock, and J. Scott, “Are foundation taster weeks an underutilised resource?,” Futur. Healthc. J., vol. 9, p. S67, Jul. 2022, doi: https://doi.org/10.7861/fhj.9-2-s67.

Y. A. Shirazi, E. W. Carr, G. R. Parsons, P. Hoagland, D. K. Ralston, and J. Chen, “Increased operational costs of electricity generation in the Delaware River and Estuary from salinity increases due to sea-level rise and a deepened channel,” J. Environ. Manage., vol. 244, pp. 228–234, Aug. 2019, doi: https://doi.org/10.1016/j.jenvman.2019.04.056.

G. Chen et al., “The overlooked role of Co(OH)2 in Co3O4 activated PMS system: Suppression of Co2+ leaching and enhanced degradation performance of antibiotics with rGO,” Sep. Purif. Technol., vol. 304, p. 122203, Jan. 2023, doi: https://doi.org/10.1016/j.seppur.2022.122203.

I. Z. Yakubu, Z. A. Musa, L. Muhammed, B. Ja’afaru, F. Shittu, and Z. I. Matinja, “Service Level Agreement Violation Preventive Task Scheduling for Quality of Service Delivery in Cloud Computing Environment,” Procedia Comput. Sci., vol. 178, pp. 375–385, 2020, doi: https://doi.org/10.1016/j.procs.2020.11.039.

B. K. Raju and G. Geethakumari, “SNAPS: Towards building snapshot based provenance system for virtual machines in the cloud environment,” Comput. Secur., vol. 86, pp. 92–111, Sep. 2019, doi: https://doi.org/10.1016/j.cose.2019.05.020.

E. Ward, “Easing stress: Contract grading’s impact on adolescents’ perceptions of workload demands, time constraints, and challenge appraisal in high school English,” Assess. Writ., vol. 48, p. 100526, Apr. 2021, doi: https://doi.org/10.1016/j.asw.2021.100526.

M. Abbasi, M. Yaghoobikia, M. Rafiee, A. Jolfaei, and M. R. Khosravi, “Efficient resource management and workload allocation in fog–cloud computing paradigm in IoT using learning classifier systems,” Comput. Commun., vol. 153, pp. 217–228, Mar. 2020, doi: https://doi.org/10.1016/j.comcom.2020.02.017.

D. Meiländer and S. Gorlatch, “Modeling the Scalability of Real-Time Online Interactive Applications on Clouds,” Futur. Gener. Comput. Syst., vol. 86, pp. 1019–1031, Sep. 2018, doi: https://doi.org/10.1016/j.future.2017.07.041.

E. Saha and P. K. Ray, “Modelling and analysis of inventory management systems in healthcare: A review and reflections,” Comput. Ind. Eng., vol. 137, p. 106051, Nov. 2019, doi: https://doi.org/10.1016/j.cie.2019.106051.

J. A. Abdor-Sierra, E. A. Merchán-Cruz, R. G. Rodríguez-Cañizo, and D. Pavlyuk, “A comparison of first-come-first-served and multidimensional heuristic approaches for asset allocation of floor cleaning machines,” Results Eng., vol. 18, p. 101074, Jun. 2023, doi: https://doi.org/10.1016/j.rineng.2023.101074.

D.-C. Li and F. M. Chang, “An In Out Combined Dynamic Weighted Round-Robin Method for Network Load Balancing,” Comput. J., vol. 50, no. 5, pp. 555–566, Jun. 2007, doi: https://doi.org/10.1093/comjnl/bxm020.

K. Etminani and M. Naghibzadeh, “A Min-Min Max-Min selective algorihtm for grid task scheduling,” in 2007 3rd IEEE/IFIP International Conference in Central Asia on Internet, IEEE, Sep. 2007, pp. 1–7. doi: https://doi.org/10.1109/CANET.2007.4401694.

F. Zhang, X. Cao, and D. Yang, “Intelligent scheduling of public traffic vehicles based on a hybrid genetic algorithm,” Tsinghua Sci. Technol., vol. 13, no. 5, pp. 625–631, Oct. 2008, doi: https://doi.org/10.1016/S1007-0214(08)70103-2.

Anxin Ye, “Study of the vehicle routing problem with time windows based on improved particle swarm optimization algorithm,” in 2011 International Conference on Computer Science and Service System (CSSS), IEEE, Jun. 2011, pp. 4053–4057. doi: https://doi.org/10.1109/CSSS.2011.5974924.

Z. Jianguo, Z. Hui, and T. Jiming, “On Portfolio Investment Model Using Ant Colony Optimization Algorithm,” in 2007 Chinese Control Conference, IEEE, Jul. 2006, pp. 494–497. doi: https://doi.org/10.1109/CHICC.2006.4347390.

G. Wang, C. Xu, and G. Liu, “The transient electromagnetic inversion based on the simplex-simulated annealing algorithm,” in 2018 37th Chinese Control Conference (CCC), IEEE, Jul. 2018, pp. 4321–4324. doi: https://doi.org/10.23919/ChiCC.2018.8484067.

D. Justice and A. Hero, “A binary linear programming formulation of the graph edit distance,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 8, pp. 1200–1214, Aug. 2006, doi: https://doi.org/10.1109/TPAMI.2006.152.

P. Kuendee and U. Janjarassuk, “A comparative study of mixed-integer linear programming and genetic algorithms for solving binary problems,” in 2018 5th International Conference on Industrial Engineering and Applications (ICIEA), IEEE, Apr. 2018, pp. 284–288. doi: https://doi.org/10.1109/IEA.2018.8387111.

Ran Quan, Jinbao Jian, Haiyan Zheng, and Linfeng Yang, “A two-stage method with mixed integer quadratic programming for unit commitment with ramp constraints,” in 2008 IEEE International Conference on Industrial Engineering and Engineering Management, IEEE, Dec. 2008, pp. 374–378. doi: https://doi.org/10.1109/IEEM.2008.4737894.

S. Demirci, M. Demirci, and S. Sagiroglu, “Optimal Placement of Virtual Security Functions to Minimize Energy Consumption,” in 2018 International Symposium on Networks, Computers and Communications (ISNCC), IEEE, Jun. 2018, pp. 1–6. doi: https://doi.org/10.1109/ISNCC.2018.8530989.

J. Xu and B. Palanisamy, “Cost-Aware Resource Management for Federated Clouds Using Resource Sharing Contracts,” in 2017 IEEE 10th International Conference on Cloud Computing (CLOUD), IEEE, Jun. 2017, pp. 238–245. doi: https://doi.org/10.1109/CLOUD.2017.38.

S. Nikam and R. Ingle, “Resource provisioning algorithms for service composition in Cyber Physical Systems,” in 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE, Sep. 2014, pp. 2797–2802. doi: https://doi.org/10.1109/ICACCI.2014.6968650.

M. S. M. Hashim, T.-F. Lu, and H. H. Basri, “Dynamic obstacle avoidance approach for car-like robots in dynamic environments,” in 2012 International Symposium on Computer Applications and Industrial Electronics (ISCAIE), IEEE, Dec. 2012, pp. 130–135. doi: https://doi.org/10.1109/ISCAIE.2012.6482083.

M. Foruhandeh, N. Tadayon, and S. Assa, “Uplink Modeling of $K$ -Tier Heterogeneous Networks: A Queuing Theory Approach,” IEEE Commun. Lett., vol. 21, no. 1, pp. 164–167, Jan. 2017, doi: https://doi.org/10.1109/LCOMM.2016.2619338.

R. Pinciroli, A. Ali, F. Yan, and E. Smirni, “CEDULE+: Resource Management for Burstable Cloud Instances Using Predictive Analytics,” IEEE Trans. Netw. Serv. Manag., vol. 18, no. 1, pp. 945–957, Mar. 2021, doi: https://doi.org/10.1109/TNSM.2020.3039942.

Downloads

Published

2023-07-12

How to Cite

Reddy, P., Verma, A., Verma, K., Singh, A., & Soni, A. (2023). Efficient Resource Allocation in Cloud Computing Environments: A Modelling Perspective. International Journal of Technology and Modeling, 2(2), 99–112. https://doi.org/10.63876/ijtm.v2i2.124

Issue

Section

Articles