Integrating IoT and Modelling for Predictive Maintenance in Industry 4.0

Authors

  • Vincent Emmanuel Rodriguez University of the Philippines Diliman
  • Camille Therese Navarro University of the Philippines Diliman
  • Joshua Miguel Alonzo University of the Philippines Diliman

DOI:

https://doi.org/10.63876/ijtm.v1i3.114

Keywords:

Internet of Things (IoT), Predictive Maintenance, Digital Twin, Machine Learning, Industry 4.0, Proactive Maintenance Scheduling

Abstract

This research presents an innovative approach to predictive maintenance by integrating Internet of Things (IoT) technology with advanced analytical modeling within the Industry 4.0 framework. The proposed system harnesses real-time data acquired from IoT sensors and combines it with machine learning algorithms and digital twin simulations to facilitate early detection of potential equipment failures. This hybrid strategy enables proactive maintenance scheduling, significantly reducing unplanned downtime and operational costs. A case study in the manufacturing sector illustrates that the interdisciplinary integration of sensor-based data and intelligent modelling not only enhances operational efficiency but also supports digital transformation by providing a flexible and responsive framework for addressing complex industrial challenges. The primary contribution of this study is the seamless unification of real-time data acquisition and predictive analytics, which lays the groundwork for the next generation of comprehensive predictive maintenance systems in the Industry 4.0 era.

Downloads

Download data is not yet available.

References

N. Shaiful Fitri Abdul Rahman, A. Adam Hamid, T.-C. Lirn, K. Al Kalbani, and B. Sahin, “The adoption of industry 4.0 practices by the logistics industry: A systematic review of the gulf region,” Clean. Logist. Supply Chain, vol. 5, p. 100085, Dec. 2022, doi: https://doi.org/10.1016/j.clscn.2022.100085.

G. Qader, M. Junaid, Q. Abbas, and M. S. Mubarik, “Industry 4.0 enables supply chain resilience and supply chain performance,” Technol. Forecast. Soc. Change, vol. 185, p. 122026, Dec. 2022, doi: https://doi.org/10.1016/j.techfore.2022.122026.

A. B. Lopes de Sousa Jabbour, C. J. Chiappetta Jabbour, T.-M. Choi, and H. Latan, “‘Better together’: Evidence on the joint adoption of circular economy and industry 4.0 technologies,” Int. J. Prod. Econ., vol. 252, p. 108581, Oct. 2022, doi: https://doi.org/10.1016/j.ijpe.2022.108581.

M. Madhavan, S. Wangtueai, M. A. Sharafuddin, and T. Chaichana, “The Precipitative Effects of Pandemic on Open Innovation of SMEs: A Scientometrics and Systematic Review of Industry 4.0 and Industry 5.0,” J. Open Innov. Technol. Mark. Complex., vol. 8, no. 3, p. 152, Sep. 2022, doi: https://doi.org/10.3390/joitmc8030152.

E. Mahmoodi, M. Fathi, and M. Ghobakhloo, “The impact of Industry 4.0 on bottleneck analysis in production and manufacturing: Current trends and future perspectives,” Comput. Ind. Eng., vol. 174, p. 108801, Dec. 2022, doi: https://doi.org/10.1016/j.cie.2022.108801.

V. Sharma, R. D. Raut, M. Hajiaghaei-Keshteli, B. E. Narkhede, R. Gokhale, and P. Priyadarshinee, “Mediating effect of industry 4.0 technologies on the supply chain management practices and supply chain performance,” J. Environ. Manage., vol. 322, p. 115945, Nov. 2022, doi: https://doi.org/10.1016/j.jenvman.2022.115945.

N. Kumar and S. C. Lee, “Human-machine interface in smart factory: A systematic literature review,” Technol. Forecast. Soc. Change, vol. 174, p. 121284, Jan. 2022, doi: https://doi.org/10.1016/j.techfore.2021.121284.

Q. Gong, G. Chen, W. Zhang, and H. Wang, “The role of humans in flexible smart factories,” Int. J. Prod. Econ., vol. 254, p. 108639, Dec. 2022, doi: https://doi.org/10.1016/j.ijpe.2022.108639.

W. Gu, S. Liu, Z. Zhang, and Y. Li, “A distributed physical architecture and data-based scheduling method for smart factory based on intelligent agents,” J. Manuf. Syst., vol. 65, pp. 785–801, Oct. 2022, doi: https://doi.org/10.1016/j.jmsy.2022.11.006.

W. Gu, Y. Li, D. Tang, X. Wang, and M. Yuan, “Using real-time manufacturing data to schedule a smart factory via reinforcement learning,” Comput. Ind. Eng., vol. 171, p. 108406, Sep. 2022, doi: https://doi.org/10.1016/j.cie.2022.108406.

Y. Zhan and K. H. Tan, “An analytic infrastructure for harvesting big data to enhance supply chain performance,” Eur. J. Oper. Res., vol. 281, no. 3, pp. 559–574, Mar. 2020, doi: https://doi.org/10.1016/j.ejor.2018.09.018.

M. Ghasemaghaei and G. Calic, “Does big data enhance firm innovation competency? The mediating role of data-driven insights,” J. Bus. Res., vol. 104, pp. 69–84, Nov. 2019, doi: https://doi.org/10.1016/j.jbusres.2019.07.006.

U. Awan, S. Shamim, Z. Khan, N. U. Zia, S. M. Shariq, and M. N. Khan, “Big data analytics capability and decision-making: The role of data-driven insight on circular economy performance,” Technol. Forecast. Soc. Change, vol. 168, p. 120766, Jul. 2021, doi: https://doi.org/10.1016/j.techfore.2021.120766.

O. Said, “A Dynamic Management Scheme for Internet of Things (IoT) Environments: Simulation and Performance Evaluation,” Comput. Model. Eng. Sci., vol. 133, no. 3, pp. 673–695, 2022, doi: https://doi.org/10.32604/cmes.2022.021160.

C. Turner, O. Okorie, C. Emmanouilidis, and J. Oyekan, “Circular production and maintenance of automotive parts: An Internet of Things (IoT) data framework and practice review,” Comput. Ind., vol. 136, p. 103593, Apr. 2022, doi: https://doi.org/10.1016/j.compind.2021.103593.

M. H. Ali, W. K. Al-Azzawi, M. Jaber, S. K. Abd, A. Alkhayyat, and Z. I. Rasool, “Improving coal mine safety with internet of things (IoT) based Dynamic Sensor Information Control System,” Phys. Chem. Earth, Parts A/B/C, vol. 128, p. 103225, Dec. 2022, doi: https://doi.org/10.1016/j.pce.2022.103225.

V. K. Rathi et al., “An edge AI-enabled IoT healthcare monitoring system for smart cities,” Comput. Electr. Eng., vol. 96, p. 107524, Dec. 2021, doi: https://doi.org/10.1016/j.compeleceng.2021.107524.

Saluky, S. H. Supangkat, and F. F. Lubis, “Moving Image Interpretation Models to Support City Analysis,” in 2018 International Conference on ICT for Smart Society (ICISS), IEEE, Oct. 2018, pp. 1–5. doi: https://doi.org/10.1109/ICTSS.2018.8550012.

Y. Chang, J. Chen, H. Lv, and S. Liu, “Heterogeneous bi-directional recurrent neural network combining fusion health indicator for predictive analytics of rotating machinery,” ISA Trans., vol. 122, pp. 409–423, Mar. 2022, doi: https://doi.org/10.1016/j.isatra.2021.04.024.

H. Sun, M. Yang, and H. Wang, “Resilience-based approach to maintenance asset and operational cost planning,” Process Saf. Environ. Prot., vol. 162, pp. 987–997, Jun. 2022, doi: https://doi.org/10.1016/j.psep.2022.05.002.

D. Karimanzira and T. Rauschenbach, “Enhancing aquaponics management with IoT-based Predictive Analytics for efficient information utilization,” Inf. Process. Agric., vol. 6, no. 3, pp. 375–385, Sep. 2019, doi: https://doi.org/10.1016/j.inpa.2018.12.003.

R. Malhotra and K. Lata, “An empirical study to investigate the impact of data resampling techniques on the performance of class maintainability prediction models,” Neurocomputing, vol. 459, pp. 432–453, Oct. 2021, doi: https://doi.org/10.1016/j.neucom.2020.01.120.

Y. Ding, Q. Zhang, T. Yuan, and F. Yang, “Effect of input variables on cooling load prediction accuracy of an office building,” Appl. Therm. Eng., vol. 128, pp. 225–234, Jan. 2018, doi: https://doi.org/10.1016/j.applthermaleng.2017.09.007.

T. van der Ploeg and R. Gobbens, “A Comparison of Different Modeling Techniques in Predicting Mortality With the Tilburg Frailty Indicator: Longitudinal Study,” JMIR Med. Informatics, vol. 10, no. 3, p. e31480, Mar. 2022, doi: https://doi.org/10.2196/31480.

K. H. K. Yeary et al., “The WORD (Wholeness, Oneness, Righteousness, Deliverance): design of a randomized controlled trial testing the effectiveness of an evidence-based weight loss and maintenance intervention translated for a faith-based, rural, African American population usi,” Contemp. Clin. Trials, vol. 40, pp. 63–73, Jan. 2015, doi: https://doi.org/10.1016/j.cct.2014.11.009.

R. van Dinter, B. Tekinerdogan, and C. Catal, “Predictive maintenance using digital twins: A systematic literature review,” Inf. Softw. Technol., vol. 151, p. 107008, Nov. 2022, doi: https://doi.org/10.1016/j.infsof.2022.107008.

D. P. Dominic, D. G. Gopal, and A. M. Abbas, “Combining Predictive Analytics and Artificial Intelligence With Human Intelligence in IoT-Based Image-Guided Surgery,” in Internet of Things in Biomedical Engineering, Elsevier, 2019, pp. 259–289. doi: https://doi.org/10.1016/B978-0-12-817356-5.00014-0.

A. Bousdekis, K. Lepenioti, D. Apostolou, and G. Mentzas, “Decision Making in Predictive Maintenance: Literature Review and Research Agenda for Industry 4.0,” IFAC-PapersOnLine, vol. 52, no. 13, pp. 607–612, 2019, doi: https://doi.org/10.1016/j.ifacol.2019.11.226.

S. Farahani, V. Khade, S. Basu, and S. Pilla, “A data-driven predictive maintenance framework for injection molding process,” J. Manuf. Process., vol. 80, pp. 887–897, Aug. 2022, doi: https://doi.org/10.1016/j.jmapro.2022.06.013.

G. Bhatti, H. Mohan, and R. Raja Singh, “Towards the future of smart electric vehicles: Digital twin technology,” Renew. Sustain. Energy Rev., vol. 141, p. 110801, May 2021, doi: https://doi.org/10.1016/j.rser.2021.110801.

A. Theissler, J. Pérez-Velázquez, M. Kettelgerdes, and G. Elger, “Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry,” Reliab. Eng. Syst. Saf., vol. 215, p. 107864, Nov. 2021, doi: https://doi.org/10.1016/j.ress.2021.107864.

P. Rokhforoz and O. Fink, “Distributed joint dynamic maintenance and production scheduling in manufacturing systems: Framework based on model predictive control and Benders decomposition,” J. Manuf. Syst., vol. 59, pp. 596–606, Apr. 2021, doi: https://doi.org/10.1016/j.jmsy.2021.04.010.

W. Luo, T. Hu, Y. Ye, C. Zhang, and Y. Wei, “A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin,” Robot. Comput. Integr. Manuf., vol. 65, p. 101974, Oct. 2020, doi: https://doi.org/10.1016/j.rcim.2020.101974.

B. Steurtewagen and D. Van den Poel, “Adding interpretability to predictive maintenance by machine learning on sensor data,” Comput. Chem. Eng., vol. 152, p. 107381, Sep. 2021, doi: https://doi.org/10.1016/j.compchemeng.2021.107381.

M. M.-L. Pfaff, F. Dörrer, U. Friess, M. Praedicow, and M. Putz, “Adaptive, predictive machine condition assessment for resilient digital solutions,” Procedia CIRP, vol. 104, pp. 821–826, 2021, doi: https://doi.org/10.1016/j.procir.2021.11.138.

Downloads

Published

2022-12-26

How to Cite

Rodriguez, V. E., Navarro, C. T., & Alonzo, J. M. (2022). Integrating IoT and Modelling for Predictive Maintenance in Industry 4.0. International Journal of Technology and Modeling, 1(3), 106–119. https://doi.org/10.63876/ijtm.v1i3.114

Issue

Section

Articles