Revolutionizing Natural Language Processing (NLP): Cutting-edge Deep Learning Models for Chatbots and Machine Translation

Authors

  • Muhamad Arif Institut Teknologi Bandung
  • Asep Saefurohman Institut Teknologi Bandung
  • Saluky UIN Siber Syekh Nurjati Cirebon

DOI:

https://doi.org/10.63876/ijtm.v3i1.111

Keywords:

Natural Language Processing (NLP), Deep Learning Models, Chatbots, Machine Translation, Transformer Architecture

Abstract

Natural Language Processing (NLP) has undergone a transformative evolution with the advent of deep learning, enabling significant advancements in chatbots and machine translation. This article explores state-of-the-art deep learning models, including Transformer-based architectures such as GPT, BERT, and T5, which have revolutionized the way machines understand and generate human language. We analyze how these models enhance chatbot interactions by improving contextual understanding, coherence, and response generation. Additionally, we examine their impact on machine translation, where neural models have surpassed traditional statistical approaches in accuracy and fluency. Despite these advancements, challenges remain, including computational costs, bias mitigation, and real-world deployment constraints. This article provides a comprehensive overview of recent breakthroughs, discusses their implications, and highlights future research directions in NLP-driven AI applications.

Downloads

Download data is not yet available.

References

X. Chen, W. Tian, and H. Fang, “Bibliometric analysis of natural language processing using CiteSpace and VOSviewer,” Nat. Lang. Process. J., vol. 10, p. 100123, Mar. 2025, doi: https://doi.org/10.1016/j.nlp.2024.100123.

S. Rajwal, Z. Zhang, Y. Chen, H. Rogers, A. Sarker, and Y. Xiao, “Applications of Natural Language Processing and Large Language Models for Social Determinants of Health: Protocol for a Systematic Review,” JMIR Res. Protoc., vol. 14, p. e66094, Jan. 2025, doi: https://doi.org/10.2196/66094.

W. Ullah, P. Oliveira-Silva, M. Nawaz, R. M. Zulqarnain, I. Siddique, and M. Sallah, “Identification of depressing tweets using natural language processing and machine learning: Application of grey relational grades,” J. Radiat. Res. Appl. Sci., vol. 18, no. 1, p. 101299, Mar. 2025, doi: https://doi.org/10.1016/j.jrras.2025.101299.

M. Anand, K. B. Sahay, M. A. Ahmed, D. Sultan, R. R. Chandan, and B. Singh, “Deep learning and natural language processing in computation for offensive language detection in online social networks by feature selection and ensemble classification techniques,” Theor. Comput. Sci., vol. 943, pp. 203–218, Jan. 2023, doi: https://doi.org/10.1016/j.tcs.2022.06.020.

R. K. Bondugula, S. K. Udgata, N. Rahman, and K. B. Sivangi, “Intelligent analysis of multimedia healthcare data using natural language processing and deep-learning techniques,” in Edge-of-Things in Personalized Healthcare Support Systems, Elsevier, 2022, pp. 335–358. doi: https://doi.org/10.1016/B978-0-323-90585-5.00014-X.

N. Ahmed, A. K. Saha, M. A. Al Noman, J. R. Jim, M. F. Mridha, and M. M. Kabir, “Deep learning-based natural language processing in human–agent interaction: Applications, advancements and challenges,” Nat. Lang. Process. J., vol. 9, p. 100112, Dec. 2024, doi: https://doi.org/10.1016/j.nlp.2024.100112.

A. A. Nargesi et al., “Automated Identification of Heart Failure With Reduced Ejection Fraction Using Deep Learning-Based Natural Language Processing,” JACC Hear. Fail., vol. 13, no. 1, pp. 75–87, Jan. 2025, doi: https://doi.org/10.1016/j.jchf.2024.08.012.

A. Azamifard, F. Rashidi, M. Ahmadi, M. Pourfard, and B. Dabir, “Toward more realistic models of reservoir by cutting-edge characterization of permeability with MPS methods and deep-learning-based selection,” J. Pet. Sci. Eng., vol. 181, p. 106135, Oct. 2019, doi: https://doi.org/10.1016/j.petrol.2019.05.086.

M. Imam et al., “Integrating real-time pose estimation and PPE detection with cutting-edge deep learning for enhanced safety and rescue operations in the mining industry,” Neurocomputing, vol. 618, p. 129080, Feb. 2025, doi: https://doi.org/10.1016/j.neucom.2024.129080.

P. Norvig, “Eliza: Dialog With a Machine,” in Paradigms of Artificial Intelligence Programming, Elsevier, 1992, pp. 151–174. doi: https://doi.org/10.1016/B978-0-08-057115-7.50005-4.

K. Jia, F. Meng, J. Liang, and P. Gong, “Text sentiment analysis based on BERT-CBLBGA,” Comput. Electr. Eng., vol. 112, p. 109019, Dec. 2023, doi: https://doi.org/10.1016/j.compeleceng.2023.109019.

M. Su, D. Cheng, Y. Xu, and F. Weng, “An improved BERT method for the evolution of network public opinion of major infectious diseases: Case Study of COVID-19,” Expert Syst. Appl., vol. 233, p. 120938, Dec. 2023, doi: https://doi.org/10.1016/j.eswa.2023.120938.

Q. Zhao, H. Wang, R. Wang, and H. Cao, “Deriving insights from enhanced accuracy: Leveraging prompt engineering in custom GPT for assessing Chinese Nursing Licensing Exam,” Nurse Educ. Pract., vol. 84, p. 104284, Mar. 2025, doi: https://doi.org/10.1016/j.nepr.2025.104284.

J.-S. Lee and J. Hsiang, “Patent claim generation by fine-tuning OpenAI GPT-2,” World Pat. Inf., vol. 62, p. 101983, Sep. 2020, doi: https://doi.org/10.1016/j.wpi.2020.101983.

X. Liu et al., “Carnosine alleviates diabetic nephropathy by targeting GNMT, a key enzyme mediating renal inflammation and fibrosis,” Clin. Sci., vol. 134, no. 23, pp. 3175–3193, Dec. 2020, doi: https://doi.org/10.1042/CS20201207.

A. Bhardwaj, P. Khanna, S. Kumar, and Pragya, “Generative Model for NLP Applications based on Component Extraction,” Procedia Comput. Sci., vol. 167, pp. 918–931, 2020, doi: https://doi.org/10.1016/j.procs.2020.03.391.

M. Zhou, N. Duan, S. Liu, and H.-Y. Shum, “Progress in Neural NLP: Modeling, Learning, and Reasoning,” Engineering, vol. 6, no. 3, pp. 275–290, Mar. 2020, doi: https://doi.org/10.1016/j.eng.2019.12.014.

B. Alshemali and J. Kalita, “Improving the Reliability of Deep Neural Networks in NLP: A Review,” Knowledge-Based Syst., vol. 191, p. 105210, Mar. 2020, doi: https://doi.org/10.1016/j.knosys.2019.105210.

A. R. Nair, R. P. Singh, D. Gupta, and P. Kumar, “Evaluating the Impact of Text Data Augmentation on Text Classification Tasks using DistilBERT,” Procedia Comput. Sci., vol. 235, pp. 102–111, 2024, doi: https://doi.org/10.1016/j.procs.2024.04.013.

H. Yu et al., “An intent classification method for questions in ‘Treatise on Febrile diseases’ based on TinyBERT-CNN fusion model,” Comput. Biol. Med., vol. 162, p. 107075, Aug. 2023, doi: https://doi.org/10.1016/j.compbiomed.2023.107075.

B. Sun, W. Cui, G. Liu, B. Zhou, and W. Zhao, “A hybrid strategy of AutoML and SHAP for automated and explainable concrete strength prediction,” Case Stud. Constr. Mater., vol. 19, p. e02405, Dec. 2023, doi: https://doi.org/10.1016/j.cscm.2023.e02405.

R. Hume, P. Marschner, S. Mason, R. K. Schilling, B. Hughes, and L. M. Mosley, “Measurement of lime movement and dissolution in acidic soils using mid-infrared spectroscopy,” Soil Tillage Res., vol. 233, p. 105807, Sep. 2023, doi: https://doi.org/10.1016/j.still.2023.105807.

B. Jurisic, I. Uglesic, A. Xemard, and F. Paladian, “High frequency transformer model derived from limited information about the transformer geometry,” Int. J. Electr. Power Energy Syst., vol. 94, pp. 300–310, Jan. 2018, doi: https://doi.org/10.1016/j.ijepes.2017.07.017.

H. Cuayáhuitl et al., “Ensemble-based deep reinforcement learning for chatbots,” Neurocomputing, vol. 366, pp. 118–130, Nov. 2019, doi: https://doi.org/10.1016/j.neucom.2019.08.007.

M. Sinthuja, C. G. Padubidri, G. S. Jayachandra, M. C. Teja, and G. S. P. Kumar, “Extraction of Text from Images Using Deep Learning,” Procedia Comput. Sci., vol. 235, pp. 789–798, 2024, doi: https://doi.org/10.1016/j.procs.2024.04.075.

A. Kumar and P. B. Pati, “Offline HWR Accuracy Enhancement with Image Enhancement and Deep Learning Techniques,” Procedia Comput. Sci., vol. 218, pp. 35–44, 2023, doi: https://doi.org/10.1016/j.procs.2022.12.399.

H. Quest et al., “A 3D indicator for guiding AI applications in the energy sector,” Energy AI, vol. 9, p. 100167, Aug. 2022, doi: https://doi.org/10.1016/j.egyai.2022.100167.

Downloads

Published

2024-03-12

How to Cite

Arif, M., Saefurohman, A., & Saluky. (2024). Revolutionizing Natural Language Processing (NLP): Cutting-edge Deep Learning Models for Chatbots and Machine Translation. International Journal of Technology and Modeling, 3(1), 1–11. https://doi.org/10.63876/ijtm.v3i1.111

Issue

Section

Articles