Advancing Medical Diagnostics with Deep Learning: A Novel Approach to Disease Detection and Prediction
DOI:
https://doi.org/10.63876/ijtm.v2i2.109Keywords:
Deep learning, medical diagnostics, disease prediction, convolutional neural networks, healthcare AIAbstract
Deep learning has revolutionized various fields, including medical diagnostics, by enabling more accurate and efficient disease detection and prediction. This paper explores the latest advancements in deep learning applications for medical diagnostics, emphasizing how convolutional neural networks (CNNs), recurrent neural networks (RNNs), and transformer models enhance diagnostic accuracy. The study discusses the integration of deep learning with medical imaging, electronic health records (EHRs), and genomic data to improve early disease detection and personalized treatment strategies. Additionally, ethical considerations, challenges, and future directions in deep learning-based diagnostics are analyzed. The findings highlight the potential of deep learning to transform healthcare by reducing diagnostic errors, optimizing treatment plans, and improving patient outcomes.
Downloads
References
C. Balsano et al., “Artificial Intelligence and liver: Opportunities and barriers,” Dig. Liver Dis., vol. 55, no. 11, pp. 1455–1461, Nov. 2023, doi: https://doi.org/10.1016/j.dld.2023.08.048.
S. Schramm, C. Wehner, and U. Schmid, “Comprehensible Artificial Intelligence on Knowledge Graphs: A survey,” J. Web Semant., vol. 79, p. 100806, Dec. 2023, doi: https://doi.org/10.1016/j.websem.2023.100806.
T. Saheb, T. Saheb, and D. O. Carpenter, “Mapping research strands of ethics of artificial intelligence in healthcare: A bibliometric and content analysis,” Comput. Biol. Med., vol. 135, p. 104660, Aug. 2021, doi: https://doi.org/10.1016/j.compbiomed.2021.104660.
S. Sarker, L. Jamal, S. F. Ahmed, and N. Irtisam, “Robotics and artificial intelligence in healthcare during COVID-19 pandemic: A systematic review,” Rob. Auton. Syst., vol. 146, p. 103902, Dec. 2021, doi: https://doi.org/10.1016/j.robot.2021.103902.
E. Mbunge and J. Batani, “Application of deep learning and machine learning models to improve healthcare in sub-Saharan Africa: Emerging opportunities, trends and implications,” Telemat. Informatics Reports, vol. 11, p. 100097, Sep. 2023, doi: https://doi.org/10.1016/j.teler.2023.100097.
A. A. Abdullah, M. M. Hassan, and Y. T. Mustafa, “A Review on Bayesian Deep Learning in Healthcare: Applications and Challenges,” IEEE Access, vol. 10, pp. 36538–36562, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3163384.
K. Muhammad, S. Khan, J. Del Ser, and V. H. C. de Albuquerque, “Deep Learning for Multigrade Brain Tumor Classification in Smart Healthcare Systems: A Prospective Survey,” IEEE Trans. Neural Networks Learn. Syst., vol. 32, no. 2, pp. 507–522, Feb. 2021, doi: https://doi.org/10.1109/TNNLS.2020.2995800.
M. Almutairi, L. A. Gabralla, S. Abubakar, and H. Chiroma, “Detecting Elderly Behaviors Based on Deep Learning for Healthcare: Recent Advances, Methods, Real-World Applications and Challenges,” IEEE Access, vol. 10, pp. 69802–69821, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3186701.
H.-F. Yang, T.-Y. Chen, C.-H. Tu, and C.-S. Chen, “Equivalent Scanning Network of Unpadded CNNs,” IEEE Signal Process. Lett., vol. 25, no. 10, pp. 1590–1594, Oct. 2018, doi: https://doi.org/10.1109/LSP.2018.2869106.
L. Khriji, S. Bouaafia, S. Messaoud, A. C. Ammari, and M. Machhout, “Secure Convolutional Neural Network-Based Internet-of-Healthcare Applications,” IEEE Access, vol. 11, pp. 36787–36804, 2023, doi: https://doi.org/10.1109/ACCESS.2023.3266586.
P. Monkam, S. Qi, H. Ma, W. Gao, Y. Yao, and W. Qian, “Detection and Classification of Pulmonary Nodules Using Convolutional Neural Networks: A Survey,” IEEE Access, vol. 7, pp. 78075–78091, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2920980.
L. Falaschetti, M. Alessandrini, G. Biagetti, P. Crippa, and C. Turchetti, “ECG-Based Arrhythmia Classification using Recurrent Neural Networks in Embedded Systems,” Procedia Comput. Sci., vol. 207, pp. 3479–3487, 2022, doi: https://doi.org/10.1016/j.procs.2022.09.406.
M. Karthiga, V. Santhi, and S. Sountharrajan, “Hybrid optimized convolutional neural network for efficient classification of ECG signals in healthcare monitoring,” Biomed. Signal Process. Control, vol. 76, p. 103731, Jul. 2022, doi: https://doi.org/10.1016/j.bspc.2022.103731.
F. M. Delpino, Â. K. Costa, S. R. Farias, A. D. P. Chiavegatto Filho, R. A. Arcêncio, and B. P. Nunes, “Machine learning for predicting chronic diseases: a systematic review,” Public Health, vol. 205, pp. 14–25, Apr. 2022, doi: https://doi.org/10.1016/j.puhe.2022.01.007.
R. Patnaik, M. T. A. Khan, I. Spencer, and H. Aziz, “Chronic Kidney Disease Classification Predicts Short-Term Outcomes of Patients Undergoing Pancreaticoduodenectomy,” J. Gastrointest. Surg., vol. 26, no. 12, pp. 2534–2541, Dec. 2022, doi: https://doi.org/10.1007/s11605-022-05512-9.
W. Soong et al., “Disease burden and predictors associated with non-response to antihistamine-based therapy in chronic spontaneous urticaria,” World Allergy Organ. J., vol. 16, no. 12, p. 100843, Dec. 2023, doi: https://doi.org/10.1016/j.waojou.2023.100843.
L. Falaschetti, L. Manoni, D. Di Leo, D. Pau, V. Tomaselli, and C. Turchetti, “A CNN-based image detector for plant leaf diseases classification,” HardwareX, vol. 12, p. e00363, Oct. 2022, doi: https://doi.org/10.1016/j.ohx.2022.e00363.
E. Ahn, A. Kumar, M. Fulham, D. Feng, and J. Kim, “Convolutional sparse kernel network for unsupervised medical image analysis,” Med. Image Anal., vol. 56, pp. 140–151, Aug. 2019, doi: https://doi.org/10.1016/j.media.2019.06.005.
M. A. Kadampur and S. Al Riyaee, “Skin cancer detection: Applying a deep learning based model driven architecture in the cloud for classifying dermal cell images,” Informatics Med. Unlocked, vol. 18, p. 100282, 2020, doi: https://doi.org/10.1016/j.imu.2019.100282.
S. Sharma and K. Guleria, “A Deep Learning based model for the Detection of Pneumonia from Chest X-Ray Images using VGG-16 and Neural Networks,” Procedia Comput. Sci., vol. 218, pp. 357–366, 2023, doi: https://doi.org/10.1016/j.procs.2023.01.018.
P. Chinnasamy, W.-K. Wong, A. A. Raja, O. I. Khalaf, A. Kiran, and J. C. Babu, “Health Recommendation System using Deep Learning-based Collaborative Filtering,” Heliyon, vol. 9, no. 12, p. e22844, Dec. 2023, doi: https://doi.org/10.1016/j.heliyon.2023.e22844.
K. E. ArunKumar, D. V. Kalaga, C. M. S. Kumar, M. Kawaji, and T. M. Brenza, “Forecasting of COVID-19 using deep layer Recurrent Neural Networks (RNNs) with Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) cells,” Chaos, Solitons & Fractals, vol. 146, p. 110861, May 2021, doi: https://doi.org/10.1016/j.chaos.2021.110861.
A. M. A. Haimed, T. Saba, A. Albasha, A. Rehman, and M. Kolivand, “Viral reverse engineering using Artificial Intelligence and big data COVID-19 infection with Long Short-term Memory (LSTM),” Environ. Technol. Innov., vol. 22, p. 101531, May 2021, doi: https://doi.org/10.1016/j.eti.2021.101531.
X. Luo et al., “Applying interpretable deep learning models to identify chronic cough patients using EHR data,” Comput. Methods Programs Biomed., vol. 210, p. 106395, Oct. 2021, doi: https://doi.org/10.1016/j.cmpb.2021.106395.
L. C. Pullen, “Doctor AI,” Am. J. Transplant., vol. 19, no. 1, pp. 1–2, Jan. 2019, doi: https://doi.org/10.1111/ajt.15209.
Y. Li, C. Huang, L. Ding, Z. Li, Y. Pan, and X. Gao, “Deep learning in bioinformatics: Introduction, application, and perspective in the big data era,” Methods, vol. 166, pp. 4–21, Aug. 2019, doi: https://doi.org/10.1016/j.ymeth.2019.04.008.
S. Wang et al., “Predicting transcription factor binding sites using DNA shape features based on shared hybrid deep learning architecture,” Mol. Ther. - Nucleic Acids, vol. 24, pp. 154–163, Jun. 2021, doi: https://doi.org/10.1016/j.omtn.2021.02.014.
Z. Wu, P. J. Lawrence, A. Ma, J. Zhu, D. Xu, and Q. Ma, “Single-Cell Techniques and Deep Learning in Predicting Drug Response,” Trends Pharmacol. Sci., vol. 41, no. 12, pp. 1050–1065, Dec. 2020, doi: https://doi.org/10.1016/j.tips.2020.10.004.
N. Tajbakhsh, L. Jeyaseelan, Q. Li, J. N. Chiang, Z. Wu, and X. Ding, “Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation,” Med. Image Anal., vol. 63, p. 101693, Jul. 2020, doi: https://doi.org/10.1016/j.media.2020.101693.
D. Shin, “The effects of explainability and causability on perception, trust, and acceptance: Implications for explainable AI,” Int. J. Hum. Comput. Stud., vol. 146, p. 102551, Feb. 2021, doi: https://doi.org/10.1016/j.ijhcs.2020.102551.