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Abstract: The increasing complexity of industrial automation systems has introduced significant 

challenges in modeling and analyzing high-dimensional decision-making environments. Traditional 

system dynamics (SD) models often struggle with scalability and computational efficiency when faced 

with numerous interdependent variables and feedback loops. In this study, we propose a Sparse System 

Dynamics Modeling (SSDM) approach that leverages sparsity-aware techniques to identify and retain 

only the most influential causal relationships within complex industrial systems. The SSDM framework 

introduces a structure reduction mechanism based on variable correlation thresholds and influence-

weight pruning, enabling the construction of lightweight yet expressive models. By applying this 

method to a case study involving automated production line optimization, we demonstrate that SSDM 

maintains the predictive integrity of full-scale SD models while reducing computational overhead by 

up to 60%. The model also facilitates faster scenario simulations and more interpretable decision 

pathways, making it suitable for real-time industrial planning and control. Our results highlight the 

potential of sparse modeling in addressing the curse of dimensionality in industrial environments, 

providing a scalable and interpretable alternative for decision-makers in smart manufacturing and 

Industry 4.0 applications. 
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INTRODUCTION 

The evolution of industrial automation, driven by the integration of cyber-physical 

systems[1][2][3], the Internet of Things (IoT)[4][5], and data-driven control strategies[6], has 

transformed modern manufacturing into a highly interconnected and complex domain. As 

systems grow in size and interdependence featuring hundreds or even thousands of interacting 

variables modeling these environments becomes increasingly challenging[7]. Conventional 

System Dynamics (SD) models[8], while powerful in capturing feedback loops, accumulations, 

and nonlinear behavior, often become computationally intensive and difficult to interpret when 

applied to high-dimensional systems[9]. 

https://ijtm.my.id/
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In industrial settings such as production scheduling[10], supply chain coordination[11], or 

energy optimization[12], decision-making depends on fast[13], reliable[14], and explainable 

simulations[15]. However, as the dimensionality of these systems increases, SD models face 

the curse of dimensionality, resulting in cluttered causal maps, excessive computational loads, 

and reduced clarity in policy impact analysis. This issue hinders the model’s usability for real-

time planning and adaptive control—two capabilities increasingly required in Industry 4.0 

environments. 

To address these limitations, this paper proposes a novel approach called Sparse System 

Dynamics Modeling (SSDM)[16]. The SSDM framework introduces a structural reduction 

process that identifies and retains only the most significant variables and feedback relationships 

within the system. By applying techniques such as influence-weight filtering, correlation 

thresholding, and iterative pruning, the model maintains its core dynamic behavior while 

significantly reducing complexity. The resulting model is leaner, faster, and more interpretable, 

making it well-suited for high-speed decision environments[17]. 

This paper is organized as follows: Section 2 reviews related work in system dynamics and 

sparse modeling. Section 3 outlines the methodology of SSDM, including the sparsification 

algorithm and model construction steps. Section 4 presents the case study and experimental 

results. Section 5 discusses the implications and limitations, and Section 6 concludes with 

directions for future research. 

RELATED WORKS 

System Dynamics (SD)[18][19] has long been used as a powerful methodology for modeling 

complex systems with feedback structures, particularly in policy analysis, resource planning, 

and industrial decision-making. Originating from the work of (Zang et al, 2025)[20], traditional 

SD has evolved into a widely accepted framework for simulating the behavior of dynamic 

systems over time. However, as the scale and interconnectedness of systems increase—

particularly in modern industrial automation contexts—traditional SD models become 

increasingly difficult to manage due to high dimensionality and densely connected causal 

loops. 

Numerous studies have attempted to improve the scalability and clarity of SD models in 

complex environments. One approach involves modular system dynamics, where submodels 

are developed independently and later integrated[21]. While modularization improves 

manageability, it does not inherently reduce model complexity or variable interdependence. 

Another popular direction is group model building[22], which improves stakeholder 

engagement but may still lead to models overloaded with variables and feedbacks that are 

difficult to interpret or optimize computationally[23]. 

In parallel, the field of sparse modeling has gained attention in data science, particularly in 

regression[24] and neural networks[25], where eliminating weak or redundant parameters 

improves generalization and performance. Sparse modeling techniques have also been 

explored in systems engineering for model order reduction, but applications in SD remain 

relatively underdeveloped. A few recent works, such as those by (Nguyen et al. 2020)[26], 

have explored variable selection in dynamic system models, yet these efforts primarily focus 

on time-series analysis or simulation-based sensitivity testing rather than structural 

sparsification of the SD framework itself. 
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In the context of industrial automation[27], dynamic modeling has become increasingly 

necessary to optimize processes like predictive maintenance, adaptive scheduling, and real-

time resource allocation. Tools such as AnyLogic and Vensim are frequently used, but the 

complexity of high-dimensional models often results in performance bottlenecks, especially in 

applications requiring near real-time decision-making. There is a growing need for lightweight 

and interpretable models that retain the behavioral essence of the system without compromising 

computational speed or decision clarity. 

This research bridges the gap between traditional SD and sparse modeling by introducing a 

Sparse System Dynamics Modeling (SSDM) approach[28]. Unlike prior work that emphasizes 

data-driven variable selection post-modeling, our method applies sparsification within the 

causal structure design process. It directly supports high-dimensional environments such as 

those found in industrial automation, while remaining generalizable to other complex decision-

making systems. 

METHODS 

The proposed Sparse System Dynamics Modeling (SSDM) approach is designed to reduce the 

structural complexity of conventional system dynamics (SD) models while preserving their 

core dynamic behaviors. This method is particularly useful in industrial automation systems 

where decision-making involves a large number of interdependent variables. The SSDM 

framework consists of four main stages: (1) system structure formulation, (2) influence weight 

analysis, (3) sparsification through thresholding and pruning, and (4) model validation and 

simulation. 

1. System Structure Formulation 

The modeling process begins with the construction of a full-scale SD model representing the 

industrial system under study. This includes defining: 

• Stock and flow structures (e.g., machine uptime, inventory levels), 

• Auxiliary variables (e.g., sensor inputs, task queue lengths), 

• Feedback loops (e.g., production output affecting resource allocation), and 

• Exogenous variables (e.g., market demand or energy prices). 

The model is initially developed using traditional tools such as Vensim or Python-based SD 

libraries, capturing all known causal relationships and feedback dynamics relevant to the 

decision-making environment. 
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Figure 1. System Dybanics Model Development 

In the System Structure Formulation stage, the objective is to build a comprehensive system 

dynamics (SD) model that captures the full complexity of the industrial environment being 

analyzed. This process starts with identifying the core stock and flow elements that represent 

the system’s accumulations and movements—such as machine uptime, raw material inventory, 

energy consumption, or workforce availability. These elements are essential for capturing the 

dynamic behavior of physical and operational processes over time. Supporting these structures 

are auxiliary variables, which function as intermediate calculations or conditional controls, 

including sensor readings, maintenance indicators, or queue lengths for pending tasks. The 

model also incorporates feedback loops, which are critical for simulating self-regulating 

behavior, such as how a high production rate might lead to resource depletion, which in turn 

reduces future output. Additionally, exogenous variables are included to account for external 

influences like fluctuating market demand, energy tariffs, or regulatory changes. All these 

components are mapped into a causal loop diagram that visually and mathematically represents 

how variables influence each other over time. The model is typically developed using tools like 

Vensim, Stella, or Python-based libraries such as BPTK or pysd, which allow for the integration 

of simulation logic, parameter tuning, and scenario testing. The goal of this phase is to ensure 

that all relevant processes and feedback mechanisms are faithfully represented before any 

structural simplification or sparsification is performed. 

2. Influence Weight Analysis 

After formulating the full model, we apply a quantitative influence analysis to assess the 

relative impact of each variable and connection. This is achieved through one or a combination 

of the following: 

• Partial derivative sensitivity tests, to measure the rate of change in output due to input 

fluctuations. 

• Correlation-based analysis, identifying variables with low direct or lagged correlation 

to key system outcomes. 
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• Simulation-based perturbation, where small changes in input variables are tested to 

evaluate their dynamic impact on the system. 

Each variable and link is assigned an influence weight, indicating its contribution to system 

behavior. 

 

Figure 2. Assesing Variable Influence on System behavior 

 

3. Sparsification via Thresholding and Pruning 

The core of the SSDM approach lies in sparsifying the system structure by removing weak or 

redundant relationships. This is done by applying: 

• A predefined influence threshold: Links with influence weights below a certain 

value (e.g., < 0.05) are removed from the model. 

• Clustering and grouping: Highly correlated variables are grouped, and 

representative proxies are retained to reduce dimensionality. 

• Feedback loop pruning: Non-critical feedback loops that do not significantly affect 

model stability or convergence are eliminated. 

This results in a sparse causal loop diagram with fewer variables and simplified 

interdependencies, improving interpretability and computational efficiency. 

4. Model Validation and Simulation 

The sparse model is then implemented and simulated under multiple operational scenarios. 

Validation is conducted through: 

• Behavior reproduction tests: Comparing the time-series output of the sparse model 

with the original full model and real-world historical data. 
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• Scenario sensitivity analysis: Evaluating whether the sparse model responds 

appropriately to known changes in system inputs (e.g., surge in demand, machine 

failure). 

• Performance benchmarking: Measuring simulation speed, memory usage, and 

accuracy across both models. 

Results are used to fine-tune the sparsification parameters and confirm that key system 

dynamics are preserved while unnecessary complexity is reduced. 

This method enables decision-makers in industrial automation to deploy lightweight, 

responsive, and interpretable models without sacrificing the robustness of SD-based analysis. 

The following section presents a real-world case study to demonstrate the implementation and 

advantages of the SSDM framework. 

RESULT AND DISCUSSION 

To evaluate the effectiveness of the proposed Sparse System Dynamics Modeling (SSDM) 

framework, we applied it to a real-world case study in a smart production line environment 

characterized by high-mix, low-volume manufacturing. The full-scale system dynamics model 

initially contained 126 variables and 192 causal links, representing elements such as machine 

utilization, work-in-process inventory, maintenance scheduling, and workforce allocation. 

 

1. Model Reduction and Structural Simplification 

After applying the SSDM sparsification procedure—using a hybrid influence-weight and 

correlation-based pruning strategy—the number of variables was reduced by 41% (from 126 

to 74), and causal links were reduced by 53% (from 192 to 90). Feedback loops were clustered 

and simplified, while highly correlated parameters such as secondary delay variables and 

redundant resource trackers were consolidated or removed. 

This structural reduction led to a clearer causal loop diagram that improved model transparency 

and interpretability, especially for non-technical stakeholders involved in operational decision-

making. 

Table 1. Model Size Before and After Sparsification 

Model Component Full Model Sparse Model Reduction (%) 

Total Variables 126 74 41% 

Causal Links 192 90 53% 

Feedback Loops 37 18 51% 

Redundant Variables Removed – 22 – 

Correlated Variables Grouped – 12 groups – 

 

After applying the sparsification procedure within the SSDM framework, the model underwent 

a significant structural reduction that improved both performance and clarity. The number of 

total variables was reduced by 41%, and causal links—representing interdependencies between 

model elements—were reduced by over half. Many redundant variables, such as repetitive 

delay stages and overlapping operational trackers, were either eliminated or grouped based on 

high correlation coefficients. In particular, variables that contributed minimally to output 

sensitivity were removed without impacting the overall behavior of the system. 

The number of feedback loops, a key source of complexity in system dynamics models, was 

also reduced by 51% through clustering and loop simplification. This resulted in a cleaner 

causal loop diagram, with fewer cross-links and more distinguishable system pathways. As a 
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result, the model became more accessible to stakeholders, especially those without technical 

backgrounds, facilitating easier interpretation of system behavior and policy impact. 

This structural simplification does not only enhance computational efficiency but also supports 

faster iteration cycles, easier calibration, and more agile decision support, particularly in 

dynamic industrial environments where conditions and priorities shift rapidly. 

 

2. Simulation Accuracy and Behavioral Fidelity 

We evaluated model performance by comparing simulation outputs between the original full 

model and the sparse model under three typical production scenarios: 

1. Baseline operation with no policy change 

2. Sudden increase in demand by 25% 

3. Unexpected machine failure at a critical node 

Across all scenarios, the SSDM preserved over 92% similarity in output behavior (based on 

RMSE and cross-correlation metrics) compared to the full model. Key performance indicators 

such as production throughput, machine downtime, and queue lengths exhibited similar 

dynamic trends, validating the behavioral fidelity of the sparse model. 

 

Table 2. Comparison of Simulation Outputs Between Full Model and Sparse Model 

Scenario Output Metric Full Model 

Value 

Sparse Model 

Value 

Similarity 

(%) 

Baseline (No Policy 

Change) 

Production Throughput 

(units/day) 

1,250 1,230 98.4% 

 
Average Queue Length 

(tasks) 

14.5 13.8 95.2% 

 
Machine Downtime 

(hours/day) 

3.2 3.4 93.3% 

Demand +25% Production Throughput 1,520 1,490 98.0%  
Queue Length 21.3 20.1 94.4%  
Machine Downtime 4.0 4.3 92.5% 

Machine Failure 

(Critical Node) 

Production Throughput 970 940 96.9% 

 
Queue Length 28.5 27.2 95.4%  
Machine Downtime 6.1 6.4 93.1% 

 

To assess the simulation accuracy and behavioral fidelity of the Sparse System Dynamics 

Model (SSDM), we compared its performance with the full model across three representative 

production scenarios: a standard baseline, a demand surge (+25%), and an unexpected machine 

failure at a critical point in the process. 

Key performance indicators—including production throughput, average queue length, and 

machine downtime—were measured for both models. The similarity values, based on RMSE 

(Root Mean Square Error) and cross-correlation comparisons, consistently exceeded 92%, 

indicating high fidelity in the sparse model’s dynamic responses. 

Even under stress conditions such as increased demand or operational disruptions, the sparse 

model closely mirrored the behavioral patterns of the full model. Slight deviations were 

observed, but they remained within acceptable margins for decision-support applications, 

especially given the substantial reduction in model complexity. 
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These results validate that SSDM can effectively preserve system dynamics and response 

behavior, making it suitable for real-time scenario analysis and strategic planning in industrial 

automation environments. 

 

3. Computational Performance 

Simulation runtime and memory usage were significantly improved. On average: 

• Execution time was reduced by 58%, enabling near real-time simulations suitable for 

online decision support. 

• Memory usage decreased by 45%, reducing the model’s computational footprint and 

improving scalability. 

These improvements demonstrate that SSDM is more practical for deployment in industrial 

environments that require fast re-simulation under frequently changing conditions. 

 
Figure 3. Memory Usage Comparison 

 

The chart is the improvements in computational performance when applying the Sparse System 

Dynamics Modeling (SSDM) framework compared to the full model. On average, the 

execution time dropped from 12.0 seconds to 5.0 seconds—a 58% reduction, making it feasible 

to run simulations in near real-time. This speed improvement is particularly valuable in 

industrial settings where decision-making needs to be rapid and iterative. Similarly, memory 

usage decreased from 800 MB to 440 MB—a 45% reduction, which significantly lowers the 

model’s computational footprint. 

These improvements not only enhance scalability but also enable the model to be deployed on 

resource-constrained environments or integrated into cloud-based simulation platforms. As 

industrial systems become more dynamic and data-driven, such computational efficiency 

becomes critical for supporting continuous optimization, rapid scenario testing, and adaptive 

control strategies. SSDM proves to be a practical and high-performing solution for modern 

industrial decision environments 

 

 

4. Decision-Making Enhancement 

The simplified model structure made it easier for decision-makers to identify leverage points 

and conduct rapid what-if analyses. For instance, the impact of reducing preventive 

maintenance intervals or reallocating labor during peak shifts could be simulated and 

understood within minutes. Moreover, the removal of noise from less impactful variables 
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helped emphasize dominant drivers of system performance, supporting more targeted 

interventions. 

Table 3. Impact of Rapid Scenario Testing with Sparse Model 

Scenario Simulation 

Runtime (sec) 

Key Intervention 

Tested 

Time to 

Insight 

(min) 

Identified 

Leverage Point 

Reduce Preventive 

Maintenance 

Interval 

3.2 Maintenance 

frequency changed 

(–20%) 

< 2 Maintenance delay 

→ uptime efficiency 

Reallocate Labor 

During Peak Hours 

2.8 Shifted labor from 

low-load to peak 

time 

< 2 Labor timing → 

queue reduction 

Increase Machine 

Buffer Stock 

3.5 Buffer size increased 

by 15% 

2–3 Inventory → 

throughput 

stabilization 

Delay in Raw 

Material Supply 

(10%) 

3.0 Simulated input 

delay 

< 2 Supply timing → 

production 

bottleneck 

Add Extra Shift on 

Weekend 

3.1 Operational hours 

extended 

< 2 Extra shift → 

backlog reduction 

 

The Sparse System Dynamics Model (SSDM) greatly facilitated rapid decision-making by 

significantly reducing simulation runtime and simplifying model interpretation. As shown in 

the table, various "what-if" scenarios could be executed in under 4 seconds, with meaningful 

insights generated within minutes—enabling near real-time planning. 

The lean model structure helped decision-makers quickly trace causal relationships and identify 

leverage points such as maintenance timing, labor allocation, or buffer sizing. By eliminating 

noise from less impactful variables, the model emphasized key performance drivers, allowing 

interventions to be tested with focus and clarity. This capability is particularly beneficial in 

dynamic industrial settings where fast iteration and precise action are critical to maintaining 

efficiency and productivity. 

 

5. Discussion of Trade-Offs 

While the SSDM approach showed strong performance, it is important to recognize trade-offs: 

• Minor loss of granularity may occur, especially for edge-case variables removed during 

pruning. 

• Some feedback interactions that contribute marginally to stability may be 

underrepresented, requiring cautious validation before critical use. 

Nonetheless, these trade-offs are acceptable in operational contexts where speed and clarity are 

prioritized over exhaustive detail, particularly when models are updated frequently. 

 

CONCLUSION 

This study introduced a Sparse System Dynamics Modeling (SSDM) framework aimed at 

addressing the growing complexity and dimensionality of industrial automation systems. By 

integrating influence-weight analysis, correlation-based pruning, and structural simplification 

techniques, SSDM enables the development of lightweight yet behaviorally accurate models 

suitable for real-time decision-making. The results from our case study in a smart production 
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environment demonstrated that SSDM could reduce model size by over 50% without 

compromising dynamic fidelity. The sparse model retained over 90% similarity in output 

behavior compared to the full model, while achieving significant improvements in 

computational performance—including a 58% reduction in execution time and a 45% decrease 

in memory usage. These benefits translate into enhanced usability, faster scenario testing, and 

improved clarity for stakeholders involved in operational planning and control. The 

streamlined structure of SSDM models makes it easier to identify leverage points and conduct 

focused policy experiments, which is critical in high-pressure industrial settings. Although 

some trade-offs in model granularity exist, they are outweighed by the practical advantages in 

speed, transparency, and scalability. Future work will explore the integration of machine 

learning for automated sparsification, as well as the extension of this framework to multi-

domain industrial systems involving energy management, logistics, and workforce dynamics. 

Overall, SSDM offers a promising direction for scalable and interpretable decision support in 

the era of Industry 4.0. 
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