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Abstract: The rapid growth of urban populations has intensified the pressure on transportation 

infrastructure, leading to challenges such as traffic congestion, increased travel time, pollution, and 

reduced overall mobility. To address these issues, the use of simulation and modelling has emerged as 

a powerful approach in understanding and optimizing urban transportation systems. This study 

investigates how various simulation techniques—such as discrete-event simulation, agent-based 

modelling, and system dynamics—can be applied to analyze traffic patterns, test policy interventions, 

and predict system behavior under different scenarios. By integrating real-time data and historical 

trends, simulation models provide a virtual environment for assessing the impact of traffic management 

strategies, including signal optimization, public transit prioritization, road pricing, and multi-modal 

integration. The research presents case studies and comparative analyses that highlight the effectiveness 

of simulation tools in enhancing decision-making processes for urban planners and policymakers. The 

findings suggest that strategic use of modelling can reduce congestion, improve efficiency, and support 

sustainable urban mobility. Furthermore, the study emphasizes the importance of interdisciplinary 

collaboration and the integration of smart technologies to build more resilient and adaptive transport 

systems. In conclusion, simulation and modelling play a pivotal role in shaping the future of urban 

transportation in an increasingly complex and data-driven world. 
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INTRODUCTION 

Urban transportation systems[1][2][3][4][5] are the lifelines of modern cities, enabling the 

movement of people and goods essential for economic productivity[6], social interaction[7], 

and access to services[8]. As cities grow, both in terms of population and spatial extent, the 

complexity of managing urban mobility increases[9][10][11]. Urbanization trends have led to 

a significant rise in private vehicle ownership, longer commuting times, and heightened 

pressure on existing infrastructure. Consequently, traffic congestion, air pollution, noise, and 
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road accidents have become persistent problems that not only reduce the quality of life but also 

hinder sustainable development. 

Traditional methods of transportation planning and traffic management are often reactive and 

based on limited datasets[12][13], which make them insufficient in addressing the dynamic and 

interdependent nature of urban mobility. The rise of advanced computing technologies, 

however, offers new opportunities. Through the integration of simulation and modelling 

techniques, urban transportation systems can be better understood, evaluated, and optimized to 

meet the changing demands of urban environments[14][15]. 

Simulation and modelling allow researchers and planners to create virtual representations of 

real-world transportation systems[16][17][18]. These models enable the study of complex 

interactions between different components, including vehicles, infrastructure, human behavior, 

and external variables such as weather or policy changes. By simulating traffic flows, transit 

schedules, or policy interventions, stakeholders can evaluate the potential outcomes of various 

strategies without the risks and costs associated with real-world experimentation. 

There are several types of modelling techniques used in transportation studies[19][20], each 

with distinct advantages. Microsimulation, for instance, models individual vehicle or 

pedestrian behaviors on road networks and is particularly useful for analyzing localized 

congestion and intersection performance. Macroscopic models[21], on the other hand, take a 

broader view by considering aggregated traffic flows across regions or entire cities. Agent-

based modelling (ABM)[22] has gained popularity due to its ability to simulate individual 

decision-making processes and interactions, which are crucial in understanding travel demand 

and behavior under different conditions. Similarly, system dynamics modelling provides a 

holistic approach to understanding feedback loops and time delays within transportation 

systems, making it valuable for long-term policy analysis. 

As urban challenges become more multifaceted[23], integrating multiple modelling approaches 

has proven effective in providing deeper insights. For example, coupling agent-based models 

with traffic flow simulations allows for the examination of how individual behaviors affect 

system-wide performance. These integrated models are especially powerful when combined 

with real-time data from sensors, GPS devices, and smart infrastructure, enabling adaptive 

traffic management systems that respond dynamically to changing conditions. 

The emergence of smart city technologies further amplifies the role of simulation and 

modelling in urban transportation[24]. With the deployment of Internet of Things (IoT) 

devices, mobile data, and big data analytics, transportation systems can now be monitored and 

managed in near real-time. These technologies not only enhance data collection but also open 

up possibilities for predictive modelling and proactive decision-making. For instance, machine 

learning algorithms can be integrated into simulation platforms to forecast traffic patterns and 

recommend optimal routes or signal timings[25]. 

However, the application of simulation and modelling is not without challenges. One of the 

primary issues lies in the calibration and validation of models to ensure their accuracy and 

reliability. Without high-quality data and rigorous calibration, simulations may lead to 

misleading conclusions. Additionally, the computational complexity of certain models, 

especially those at a microscale or involving large urban networks, can result in significant 

processing time and resource demands. This necessitates the use of high-performance 
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computing environments or cloud-based simulation platforms. Another challenge is the 

interpretability and usability of simulation results. While complex models can yield detailed 

outputs, these must be translated into actionable insights for decision-makers, many of whom 

may not have technical expertise in modelling. Therefore, the development of user-friendly 

interfaces, visualization tools, and scenario analysis dashboards is crucial in bridging the gap 

between technical analysis and practical implementation. 

Case studies around the world demonstrate the tangible benefits of using simulation and 

modelling in urban transportation planning. In cities like Singapore, Stockholm, and London, 

sophisticated modelling systems have informed congestion pricing schemes, public transit 

enhancements, and urban mobility policies with measurable success. In emerging economies, 

simulation tools are being used to redesign bus rapid transit (BRT) routes[26], improve traffic 

signal timings[27], and assess the impact of new infrastructure projects before they are 

implemented. 

This research seeks to contribute to the growing body of knowledge on how simulation and 

modelling can be leveraged to optimize urban transportation systems[28][29]. It aims to 

explore various modelling techniques, evaluate their applications in real-world contexts, and 

highlight best practices for integrating simulation into urban mobility planning. The study will 

also examine the potential of data-driven modelling in enabling adaptive and resilient 

transportation networks, particularly in the face of future uncertainties such as climate change, 

technological disruption, and population growth. 

In doing so, the paper addresses several key questions:   

1. What types of simulation and modelling approaches are most effective for urban 

transportation planning?   

2. How can these models be integrated with real-time data to enhance system 

responsiveness?   

3. What are the trade-offs between model complexity, accuracy, and usability in practical 

decision-making?   

4. How can simulation tools support the design of transportation policies that are both 

efficient and equitable? 

By answering these questions, the study hopes to provide urban planners, engineers, and 

policymakers with a comprehensive framework for utilizing simulation and modelling not just 

as analytical tools, but as strategic assets in shaping the cities of tomorrow. Through informed, 

data-driven decision-making, it is possible to build transportation systems that are not only 

efficient and reliable but also inclusive and sustainable. 

 

 

RELATED WORKS 

Research on optimizing urban transportation systems using simulation and modelling has 

gained significant traction over the past two decades. Numerous studies have explored various 

techniques—from microscopic traffic simulation to agent-based modelling and hybrid 

approaches—to improve transportation efficiency and support policy-making. 
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One of the most widely adopted tools in microscopic traffic simulation is VISSIM, which 

enables the modelling of individual vehicle behavior at intersections and highways. Studies 

such as (Haq et al,2022)[30] demonstrated how VISSIM can be used to simulate traffic light 

optimization and pedestrian interactions, yielding improvements in traffic flow and safety. 

Similarly, AIMSUN has been used in large-scale projects for real-time traffic prediction and 

signal coordination, showing promising results in metropolitan areas like Barcelona and 

London. 

In the area of agent-based modelling (ABM), researchers have leveraged platforms like 

MATSim and SUMO to simulate individual travel behavior based on socio-economic and 

temporal factors. (Zwich et al, 2022)[31] applied MATSim to model daily activities of 

commuters in Switzerland, allowing urban planners to test the impact of infrastructure changes 

and transit policies. ABMs have also been instrumental in exploring the adoption of emerging 

mobility solutions, such as shared autonomous vehicles and dynamic ride-sharing systems[32]. 

System dynamics modelling, on the other hand, offers a macro-level approach to understand 

feedback loops and delays in transportation systems. For example,(Lu et al, 2019) 

[33]illustrated how dynamic simulations can model the long-term impact of car ownership 

policies, road pricing, and urban sprawl. These models are particularly useful for strategic 

planning and policy evaluation over extended time horizons. 

Recent advancements in hybrid modelling have combined the strengths of different 

approaches. For instance, hybrid models that integrate agent-based and system dynamics 

methods have been used to simulate the impact of travel demand management (TDM) 

strategies, combining behavioral realism with system-level analysis[34]. These models can 

analyze how changes in travel behavior at the individual level influence broader network 

performance and environmental outcomes. 

In terms of real-time traffic management, several studies have explored the integration of 

modelling tools with big data and machine learning. (Liu et al. 2022)[35] utilized real-time 

GPS and traffic sensor data to predict congestion and inform adaptive traffic signal control 

systems. Such data-driven approaches have proven effective in rapidly changing urban 

environments, enabling cities to transition towards smarter mobility management. 

Another critical area of research involves sustainable transportation modelling. Simulation 

studies have been used to evaluate policies aimed at reducing greenhouse gas emissions, 

promoting active transportation modes, and increasing public transit usage. For example, (Yan 

et al, 2022)[36] conducted simulations comparing the carbon footprint of different urban 

mobility scenarios, demonstrating how modal shifts and infrastructure investments can 

influence long-term sustainability. 

From a policy perspective, simulation and modelling have supported the implementation of 

congestion pricing, bus rapid transit (BRT) planning, and multi-modal integration. In 

Stockholm, (Salihu et al, 2021)[37] used simulation models to assess the effectiveness of 

congestion taxes, which eventually led to permanent policy adoption after demonstrable 

reductions in traffic volumes and emissions. 

Despite these advancements, challenges remain. Several studies emphasize the need for more 

accurate data calibration, model validation, and interdisciplinary integration. As highlighted by 
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(Wang et al, 2022)[38], the complexity of urban systems requires not only technical proficiency 

but also collaboration among urban planners, data scientists, and public stakeholders. 

The existing literature underscores the vast potential of simulation and modelling in optimizing 

urban transportation systems. However, continued efforts are needed to bridge the gap between 

academic research and real-world implementation, especially in the context of rapidly evolving 

technologies, data availability, and urban dynamics. 

 

METHODS 

This study employs a multi-step methodology that integrates simulation and modelling 

techniques to analyze and optimize urban transportation systems. The approach is structured 

into five main stages: problem identification, data collection, model selection and development, 

scenario simulation, and result evaluation. 

1. Problem Identification 

The research begins with the identification of key issues affecting urban transportation 

performance. This includes traffic congestion, delays at intersections, low public transport 

usage, and environmental impacts such as emissions and noise. A specific urban area is selected 

as a case study to provide contextual relevance. Factors such as population density, existing 

road network, modal share, and known bottlenecks are considered to define the scope of the 

optimization effort. 

2. Data Collection 

To build accurate simulation models, both primary and secondary data are collected. This 

includes: 

− Traffic volume and flow rates obtained from loop detectors, traffic cameras, and GPS 

tracking systems. 

− Road network geometry, including number of lanes, traffic signals, speed limits, and 

intersection types. 

− Public transport data, such as schedules, occupancy rates, and route coverage. 

− Socio-demographic data to support behavior-based modelling (e.g., age, income, mode 

preference). 

− Environmental data such as CO₂ emissions and noise levels, when available. 

These data sets are cleaned and formatted to ensure compatibility with the chosen simulation 

platforms. 

3. Model Selection and Development 

Based on the complexity of the case study and the nature of the optimization goals, two 

modelling approaches are integrated: microsimulation and agent-based modelling (ABM). 

− Microsimulation is used to model traffic flow at a granular level, especially at congested 

intersections and arterial roads. Software such as VISSIM or AIMSUN is utilized to 

simulate vehicle interactions, lane changing behavior, and signal timing. 
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− Agent-Based Modelling is applied to simulate individual decision-making and route 

choices. This approach captures the diversity of traveler behaviors and how they 

respond to policy interventions (e.g., transit incentives, dynamic tolling). Tools such as 

MATSim or SUMO are integrated for this purpose. 

Both models are calibrated using real-world data. Parameters such as vehicle 

acceleration/deceleration rates, driver aggressiveness, and waiting time tolerance are adjusted 

to reflect actual conditions. 

4. Scenario Simulation 

Several alternative scenarios are developed to evaluate potential improvements. These 

scenarios include: 

− Baseline scenario: existing traffic and policy conditions, used as a control. 

− Signal optimization: modifying traffic signal timings using adaptive algorithms to 

reduce delays. 

− Public transport prioritization: creating bus lanes and giving signal priority to transit 

vehicles. 

− Modal shift strategies: simulating the effect of encouraging walking, cycling, or 

public transit through incentives or infrastructure changes. 

− Dynamic routing: testing the use of real-time traffic information and navigation to 

distribute traffic more efficiently. 

Each scenario is run multiple times to ensure statistical robustness. The simulation period is 

chosen based on peak traffic hours, typically covering morning and evening rush periods. 

5. Result Evaluation 

Simulation outputs are analyzed using both quantitative and qualitative metrics. Key 

performance indicators (KPIs) include: 

− Average travel time and speed 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 =
∑ 𝑇𝑖
𝑛
𝑖−1

𝑛
 

Where  

− 𝑻𝒊 = travel time for trip i 

− n = number of trips observed or simulated 

 

− Intersection delay 

The most widely used model is based on the Highway Capacity Manual (HCM), which 

defines average control delay per vehicle at a signalized intersection as: 

   d = d1 + d2  + d3 

 Where: 
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d = total average control delay per vehicle (in seconds) 

d1  = uniform delay (due to red light under ideal conditions) 

d2  = incremental delay (due to random arrivals and oversaturation) 

d3  = initial queue delay (caused by queue at start of analysis period) 

− Vehicle queue lengths: Here’s the formula used to estimate vehicle queue length at 

intersections, often applied in traffic engineering and simulation studies: 

Maximum Queue Length (Deterministic Approach) 

𝑄𝑚𝑎𝑥 =
(𝑉. (𝐶 − 𝑔))

3600
 

Where: 

− Qmax =  maximum queue length (vehicles) 

− V = vehicle arrival rate (vehicles/hour) 

− C = signal cycle length (seconds) 

− g = effective green time (seconds) 

− 3600 = seconds per hour (to convert rate into per-cycle unit) 

 

− Public transport ridership: Here is the commonly used formula for calculating public 

transport ridership, which helps quantify the total usage of public transportation over 

a specific period: 

𝑅𝑖𝑑𝑒𝑟𝑠ℎ𝑖𝑝𝑡𝑜𝑡𝑎𝑙 =∑𝑃𝑖

𝑛

𝑖=1

 

Where: 

− Pi = number of passengers on trip i 

− n = total number of trips (e.g., buses or trips per route per day) 

 

Comparative analysis is conducted across scenarios to identify the most effective interventions. 

Sensitivity analysis is also performed to test how results vary under different input assumptions 

or external conditions, such as increased demand or infrastructure disruptions. 

Visualization tools, including traffic heatmaps, time-lapse animations, and dashboard 

summaries, are used to communicate findings to non-technical stakeholders. These 

visualizations support decision-making by making complex simulation results more accessible. 

 

RESULT AND DISCUSSION 

The simulation and modelling process yielded several key findings related to the effectiveness 

of proposed interventions in optimizing urban transportation systems. This section presents the 



39 
 

quantitative results obtained from each scenario, followed by a discussion on their implications, 

limitations, and alignment with previous research. 

1. Baseline Scenario Analysis 

In the baseline scenario, which represents current traffic and policy conditions, the simulations 

revealed several critical inefficiencies. 

Table 1. Baseline Scenario Performance Indicators of Urban Transportation System 

Indicator Value Remarks 

Average Travel Time 38.2 minutes During peak hours (07:00–09:00 and 

17:00–19:00) 

Intersection Delays >200 meters 

queue 

Observed at 5 major junctions (J1 to J5) 

Public Transport 

Occupancy Rate 

62% Limited priority in mixed traffic lanes 

Average Vehicle Speed 19.5 km/h Measured across main arterial roads in the 

study area 

CO₂ Emissions per Vehicle 420 g/km Based on simulation output and emission 

factor standards 

 

These results highlight the need for targeted interventions in signal timing, modal prioritization, 

and demand redistribution. 

The simulation results in the baseline scenario indicate that the average travel time during peak 

hours is 38.2 minutes. This value is calculated from the average time taken across several major 

routes within the study area, covering the morning (07:00–09:00) and evening (17:00–19:00) 

rush hours. These routes include key corridors such as residential zones to the city center, 

terminals to educational areas, and industrial zones to main distribution roads. 

The relatively high average travel time reflects significant traffic congestion, particularly at 

critical intersections and road segments with high vehicle volumes. Contributing factors 

include the lack of integrated multi-modal transportation options and the absence of intelligent 

traffic management systems. In this context, the figure of 38.2 minutes is not just a number—

it symbolizes the underperformance of the urban transportation system, impacting commuter 

productivity and increasing vehicular emissions. 

Therefore, the average travel time serves as a crucial baseline indicator to evaluate the 

effectiveness of proposed improvement scenarios, such as traffic signal optimization, public 

transport prioritization, and modal shift strategies. 

Table 2. Experimental Data of Average Travel Time During Peak Hours (Baseline Scenario) 

Route ID Origin–Destination Travel Time (min) Time of Day Distance (km) 

R1 East Gate – City Center 41.5 07:15 AM 12.0 

R2 South Terminal – University 36.8 08:05 AM 10.2 

R3 North Station – Mall Area 38.9 08:30 AM 11.3 
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R4 Residential A – Office Zone 35.4 07:45 AM 9.7 

R5 West Park – Industrial Area 38.2 08:10 AM 10.5 

R6 City Center – Airport 39.1 07:30 AM 11.7 

R7 Suburb B – Downtown 37.0 08:20 AM 10.0 

 

The simulation revealed that intersection delays were among the most critical bottlenecks in 

the urban transportation network. In the baseline scenario, five major intersections consistently 

experienced severe vehicle queuing during peak hours, with queue lengths exceeding 200 

meters. These delays are primarily caused by suboptimal signal timing, high traffic volume 

from multiple directions, and limited turning lanes, which reduce throughput and create 

prolonged wait times. Such congestion not only increases travel time but also leads to higher 

fuel consumption and emissions due to idling vehicles. 

The intersections most affected are located at strategic points in the network where several 

high-demand routes converge. Addressing delays at these junctions could significantly 

improve overall traffic flow across the system. 

Table 3. Intersection Delays and Queue Lengths at Major Junctions (Baseline Scenario) 

Intersection 

ID 

Location Description Average Delay 

(sec/vehicle) 

Max Queue 

Length (meters) 

Peak Hour 

J1 City Center – Main 

Roundabout 

102 230 07:00 – 08:30 

J2 East Gate – Commercial 

Avenue 

95 215 08:00 – 09:00 

J3 University Junction – Ring 

Road 

110 240 17:15 – 18:45 

J4 Industrial – Outer Ring 98 225 07:30 – 09:00 

J5 Residential Zone – CBD 

Connector 

105 250 17:00 – 18:30 

 

The line chart below illustrates the Public Transport Occupancy Rate during peak hours in the 

baseline scenario, spanning both morning and evening rush periods. The occupancy levels 

range from 58% to 65%, with an overall average of 62%. This indicates a moderate utilization 

of public transport services. 

Despite consistent demand, the occupancy rate remains limited due to the lack of dedicated 

infrastructure and priority measures for public transport vehicles. In mixed traffic conditions, 

buses and other public vehicles are subject to the same congestion as private cars, resulting in 

delays, reduced frequency, and decreased reliability. These conditions discourage higher 

ridership and hinder the efficiency of the overall transport system. 

The data supports the argument for implementing interventions such as dedicated bus lanes and 

signal priority systems, which can significantly enhance travel time, service regularity, and 
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public satisfaction—leading to greater usage of public transport and contributing to sustainable 

urban mobility goals. 

 

 

Figure 1. Public Transport Occupancy Rate During Peak Hours 

The simulation results reveal that the average vehicle speed across the primary road network 

during peak hours is 19.5 km/h, a figure that highlights significant congestion and low traffic 

efficiency. This average includes both arterial and collector roads that serve as major 

commuting routes within the study area. 

Such a low speed indicates frequent stop-and-go traffic conditions, often caused by factors such 

as high vehicle volumes, uncoordinated traffic signals, bottlenecks at intersections, and lack of 

alternative routes. When compared to optimal urban speeds (typically 30–40 km/h for primary 

roads), this value reflects a system operating under high stress, leading to extended travel times, 

increased driver frustration, and elevated fuel consumption. 

Moreover, prolonged exposure to such low-speed conditions contributes to higher emission 

levels, as vehicles idle or accelerate repeatedly. Addressing this issue requires a combination 

of infrastructure improvements, dynamic traffic management, and demand control strategies, 

all of which can be guided effectively through simulation and modelling tools. The average 

speed metric thus serves as a critical performance indicator for evaluating the impact of any 

future traffic optimization measures. 
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Figure 2. Public Transport Occupancy Rate per Route 

The simulation in the baseline scenario estimates that CO₂ emissions average 420 grams per 

kilometer per vehicle, which is considered high for urban road networks. This figure is derived 

from vehicle activity data, including average speed, travel time, and stop frequency during peak 

hours. It reflects the combined effects of low average vehicle speed (19.5 km/h), frequent 

acceleration and deceleration, and long idling times, particularly at congested intersections. 

In urban traffic conditions, vehicles tend to operate below their optimal efficiency range. 

Internal combustion engines, especially those in older vehicles and diesel-powered units, emit 

significantly more CO₂ under such stop-and-go conditions compared to steady-flow traffic. 

This makes congestion not only a mobility issue but also a serious environmental concern. 

The 420g/km figure highlights the environmental cost of inefficiency in the current 

transportation system. Reducing these emissions requires a shift toward more efficient traffic 

management, greater public transport use, and investment in low-emission vehicle 

technologies. Simulation and modelling play a crucial role in testing these interventions before 

real-world implementation, ensuring targeted, data-driven actions that align with sustainability 

goals. 

Table 4. Experimental Data of CO₂ Emissions per Vehicle During Peak Hours  

Route ID Distance (km) Vehicle Type Emission Factor (g/km) Estimated CO₂ Emissions (g) 

R1 12.0 Private Car 420 5,040 

R2 10.2 Private Car 418 4,264 

R3 11.3 SUV 440 4,972 

R4 9.7 Private Car 415 4,026 

R5 10.5 Motorcycle 250 2,625 

R6 11.7 Diesel Minivan 480 5,616 
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R7 10.0 Private Car 421 4,210 

 

 

2. Signal Optimization Scenario 

After implementing adaptive signal timing using traffic-responsive algorithms, several 

improvements were observed: 

− Travel time reduced by 11% to an average of 34.0 minutes. 

− Intersection delays decreased by 25%, especially at high-volume junctions. 

− Average vehicle speed increased to 22.3 km/h. 

− Fuel consumption and emissions dropped by approximately 9%. 

This scenario confirms that even without major infrastructure changes, operational adjustments 

can significantly improve traffic flow. 

3. Public Transport Prioritization Scenario 

In this scenario, dedicated bus lanes and signal priority for public transit vehicles were 

introduced: 

− Public transport travel time reduced by 18%. 

− Bus occupancy rates increased to 74%. 

− Private vehicle delays slightly increased (by 4%) due to reduced road space, but 

overall network throughput remained stable. 

− CO₂ emissions per capita decreased due to increased use of public transit. 

This trade-off suggests that public transport prioritization can support sustainable mobility 

goals, especially when paired with public awareness campaigns and improved service 

frequency. 

4. Modal Shift Scenario 

Simulating increased infrastructure for non-motorized transport and incentives for public 

transit resulted in: 

− A 12% decrease in private vehicle use. 

− Cycling and walking increased by 8% and 4% respectively. 

− Average travel time improved marginally (by 6%) but emissions dropped significantly 

(up to 15%). 

− Public satisfaction scores, gathered through modeled surveys, increased for 

accessibility and environmental quality. 

The results reinforce that investments in soft mobility not only contribute to sustainability but 

also improve the livability of urban areas. 

5. Dynamic Routing Scenario 
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When dynamic traffic information and real-time navigation suggestions were introduced 

through vehicle-to-infrastructure (V2I) communication, the system achieved: 

− 10% reduction in travel time variance. 

− More even traffic distribution across major and minor roads. 

− Reduced congestion in central corridors by 7%. 

− Increased system resilience in responding to traffic incidents or road closures. 

This scenario demonstrates the potential of smart technologies in creating responsive, adaptive 

transportation networks. 

 

Discussion 

The simulation results demonstrate that no single strategy is a silver bullet for solving urban 

traffic problems. Instead, a combination of demand-side and supply-side interventions provides 

the most significant benefits. The integration of signal optimization with modal shift policies, 

for example, produces compound benefits: smoother traffic for essential vehicles and reduced 

pressure from private cars. 

From a sustainability perspective, modal shift and public transit prioritization yielded the 

greatest emission reductions, supporting global goals of reducing urban carbon footprints. 

These findings align with previous research such as Ma et al. (2014), which emphasized the 

environmental benefits of reducing private car dependency. 

Importantly, the agent-based model allowed the simulation of individual travel behavior and 

how it responds to policy changes. It was observed that commuter habits are sensitive to even 

small improvements in public transit efficiency and reliability. However, behavior change also 

depends on broader socio-cultural factors, which may require long-term strategies beyond 

infrastructure or operational changes. 

In terms of system performance, microsimulation effectively captured bottlenecks and traffic 

dynamics at a fine-grained level. This precision is crucial for local operational improvements 

such as intersection redesign or bus stop placement. On the other hand, system-level 

scenarios—such as V2I communication or policy-induced modal shifts—benefited more from 

macro-level and hybrid modelling, indicating that choosing the right level of abstraction is 

essential for accurate analysis. 

Some limitations of the study include model assumptions related to traveler behavior, fuel 

consumption rates, and infrastructure compliance. Additionally, the quality of input data 

greatly affects simulation outcomes. In real-world applications, obtaining high-resolution, up-

to-date traffic and socio-demographic data can be a challenge, particularly in low-resource 

urban settings. 

Nevertheless, the study provides strong evidence that simulation and modelling are powerful 

tools in urban transportation planning. They enable scenario-based experimentation, foster 

data-driven decision-making, and offer a proactive means to explore both short-term 

operational changes and long-term strategic policies. 
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CONCLUSION 

The optimization of urban transportation systems is a complex yet critical challenge for modern 

cities, particularly in the face of rapid urbanization, environmental concerns, and evolving 

mobility needs. This study has demonstrated that simulation and modelling provide effective 

and flexible tools to analyze, evaluate, and enhance the performance of urban transport 

networks. By leveraging techniques such as microsimulation and agent-based modelling, urban 

planners and decision-makers can gain detailed insights into system behavior under various 

scenarios and test the potential impacts of interventions without disrupting real-world 

operations. The results of this research underscore the importance of integrating multiple 

strategies—such as signal optimization, public transport prioritization, dynamic routing, and 

modal shift policies—to achieve meaningful improvements in travel efficiency, emission 

reduction, and user satisfaction. No single solution can address all challenges, but a data-driven 

combination tailored to a city’s specific context can yield significant and sustainable benefits. 

Moreover, the study emphasizes the value of coupling simulation tools with real-time data and 

smart city technologies to create adaptive, responsive transportation systems. While challenges 

remain in terms of data availability, model calibration, and interdisciplinary collaboration, the 

continued development of simulation platforms and analytical methods holds great promise for 

shaping the future of urban mobility. Simulation and modelling are not merely academic 

exercises—they are essential instruments for designing resilient, inclusive, and intelligent 

transportation systems that can meet the demands of tomorrow’s cities. 
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