INTERNATIONAL JOURNAL OF TECHNOLOGY AND MODELING

Volume 3 Issue 1 Year 2024 Pages 12 - 23 e–ISSN 2964-6847

Url: https://ijtm.my.id

Enhancing Predictive Maintenance in Manufacturing Using Deep Learning-Based Anomaly Detection

Samuel Ardito, Wahyu Setiawan, Agung Wibisono Teknik Informatika, Bina Nusantara University, Jakarta, Indonesia

Correspondence to: <u>samuel451@mail.com</u>

Abstract: Predictive maintenance has become a critical strategy in modern manufacturing to reduce downtime, optimize operational efficiency, and minimize maintenance costs. Traditional approaches, such as rule-based and statistical methods, often fail to detect complex patterns and early signs of system failures. This paper explores the application of deep learning-based anomaly detection techniques to enhance predictive maintenance in manufacturing. Specifically, we investigate the use of autoencoders, recurrent neural networks (RNNs), and convolutional neural networks (CNNs) for identifying anomalies in sensor data collected from industrial equipment. Our proposed framework enables early fault detection by learning complex temporal and spatial patterns in machinery behavior. Experimental results demonstrate that deep learning models significantly improve anomaly detection accuracy compared to conventional methods, thereby facilitating timely maintenance interventions and reducing unexpected failures. The findings highlight the potential of deep learning in revolutionizing predictive maintenance, ensuring higher reliability and efficiency in manufacturing systems.

Keywords: Predictive maintenance, anomaly detection, deep learning, manufacturing, autoencoders, recurrent neural networks, convolutional neural networks.

Article info: Date Submitted: 12/08/2023 | Date Revised: 02/12/2023 | Date Accepted: 03/02/2024

This is an open access article under the <u>CC BY-SA</u> license.

INTRODUCTION

In modern manufacturing, equipment reliability and efficiency are critical factors that directly impact productivity, operational costs, and overall business performance[1][2]. Unexpected machine failures can lead to significant downtime, production losses, and increased maintenance expenses. To address these challenges, predictive maintenance (PdM) has emerged as a proactive strategy that leverages data-driven techniques to anticipate equipment failures before they occur[3][4][5][6]. Unlike reactive or preventive maintenance, predictive maintenance aims to optimize maintenance schedules based on real-time monitoring and anomaly detection, thereby improving system availability and reducing operational disruptions.

Traditional predictive maintenance approaches rely on statistical models, threshold-based rules, and simple machine-learning techniques to analyze sensor data and detect early signs of potential failures[7]. However, these methods often struggle to capture complex, nonlinear relationships in high-dimensional industrial data. With advancements in artificial intelligence (AI) and deep learning, more sophisticated anomaly detection techniques have been developed to enhance predictive maintenance capabilities. Deep learning models, such as autoencoders, recurrent neural networks (RNNs)[8], and convolutional neural networks (CNNs), have demonstrated superior performance in recognizing subtle patterns and deviations in sensor data, enabling early fault detection and more accurate failure predictions.

This paper explores the application of deep learning-based anomaly detection in predictive maintenance for manufacturing. We propose a framework that leverages deep learning models to process real-time sensor data, detect anomalies, and predict potential equipment failures. Our study evaluates the effectiveness of these models in identifying faults with higher accuracy compared to traditional approaches. The results highlight the transformative potential of deep learning in predictive maintenance, paving the way for more reliable and efficient manufacturing operations.

The rest of the paper is organized as follows: Section 2 discusses related work in predictive maintenance and anomaly detection. Section 3 presents the proposed methodology and deep learning models used for anomaly detection. Section 4 describes the experimental setup and evaluation metrics. Section 5 discusses the results and key findings, while Section 6 concludes the paper with insights and future research directions.

RELATED WORKS

Predictive maintenance has been an active area of research, with various approaches proposed to enhance equipment reliability and operational efficiency. Traditional methods, machine learning techniques, and deep learning-based anomaly detection have all played a role in improving predictive maintenance strategies. This section reviews existing literature on these approaches and highlights their advantages and limitations.

Early predictive maintenance methods primarily relied on statistical models, rule-based systems, and signal processing techniques. Methods such as Fourier Transform[9], Wavelet Transform[10], and Principal Component Analysis (PCA)[11] have been used to analyze sensor signals and detect abnormal patterns in machinery operations[12]. While these techniques provide valuable insights, they often require domain expertise to define thresholds and interpret results, making them less adaptable to dynamic industrial environments.

To overcome the limitations of traditional methods, researchers have explored machine learning (ML) techniques for predictive maintenance[13][14][15][16][17]. Supervised learning models such as Support Vector Machines (SVM)[18], Random Forests[19][20][21], and Gradient Boosting[22][23][24][25] have been used to classify normal and faulty states of equipment. Additionally, unsupervised methods like k-Means clustering[26] and Isolation Forests[27][28] have been applied for anomaly detection without labeled fault data. While ML models improve fault detection, they often struggle with high-dimensional, time-series data and require extensive feature engineering.

Recent advancements in deep learning have significantly improved anomaly detection in predictive maintenance[28]. Autoencoders, Long Short-Term Memory (LSTM) networks[29], and Convolutional Neural Networks (CNNs)[30] have been successfully applied to analyze large-scale sensor data. Autoencoders help in learning normal operating patterns and detecting deviations, while LSTM networks effectively capture temporal dependencies in time-series data. CNNs, on the other hand, excel at feature extraction from multidimensional sensor inputs. Studies have shown that deep learning models outperform traditional machine learning techniques in terms of accuracy and robustness in detecting complex fault patterns.

While deep learning-based approaches have demonstrated superior performance, challenges remain in terms of computational complexity, model interpretability, and real-time deployment in industrial settings. Many existing studies focus on specific deep learning architectures without considering hybrid models that combine multiple techniques for enhanced predictive capabilities. Additionally, the integration of deep learning with edge computing and Industrial Internet of Things (IIoT) platforms is an area that requires further exploration[31].

This paper aims to address these gaps by developing a deep learning-based anomaly detection framework that combines multiple architectures to improve predictive maintenance in manufacturing. Our approach seeks to enhance detection accuracy, reduce false positives, and enable real-time fault prediction for industrial applications.

METHODS

This section presents the proposed methodology for enhancing predictive maintenance in manufacturing using deep learning-based anomaly detection. The approach involves data collection, preprocessing, model selection, training, and evaluation. The overall framework aims to detect anomalies in sensor data, enabling early fault prediction and proactive maintenance actions.

1. Data Collection and Preprocessing

Predictive maintenance relies on continuous monitoring of industrial equipment through sensor networks. Data is collected from multiple sensors measuring parameters such as vibration, temperature, pressure, and motor current. In time-series data analysis for deep learning models, the collected data must undergo several preprocessing steps to ensure its quality and suitability for further analysis. These steps include data cleaning, feature engineering, segmentation, and labeling. The first step is data cleaning, which aims to ensure the accuracy and consistency of the data. In this stage, missing values are identified and either removed or imputed using techniques such as interpolation or mean substitution. Additionally, outlier detection is performed to identify values that deviate significantly from the general pattern, which may result from sensor errors or unwanted anomalies. After that, data normalization is applied to bring different variables to a common scale, enabling deep learning models to function more efficiently and produce more accurate results.

Feature engineering is carried out to extract and transform relevant features that enhance anomaly detection. This process involves selecting the most informative features from the raw data and creating additional features that can improve model performance. For instance, in time-series analysis, features such as moving averages, differencing, or frequency transformations can be used to uncover hidden patterns in the data.

Once the relevant features are selected and processed, the data undergoes segmentation. In this step, the data is divided into fixed-length time windows to capture temporal dependencies in the time-series data. This technique allows deep learning models to analyze trends and patterns within specific periods, which is crucial for detecting behavioral changes in the data over time.

Labeling is performed if historical failure records or anomaly reports are available. When such records exist, the data is labeled as either normal or faulty, allowing the use of supervised learning methods. However, if no documented failure data is available, unsupervised anomaly detection techniques are applied. In this case, the model learns from the data distribution without predefined labels to identify points that deviate from normal patterns.

By implementing these preprocessing steps, data quality can be improved, enabling deep learning models to detect anomalies more effectively and generate more accurate insights.

2. Deep Learning Models for Anomaly Detection

To improve predictive maintenance, we explore various deep learning architectures capable of detecting anomalies in industrial sensor data.

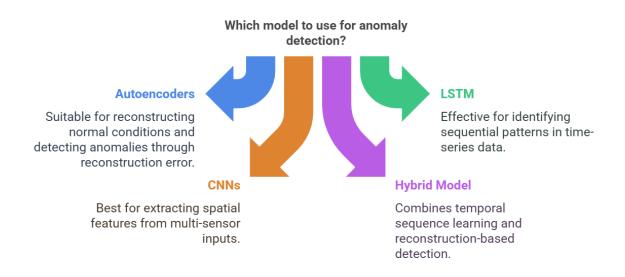


Figure 1. Model for anomaly detection

In this study, several deep learning models are utilized to detect anomalies in time-series data. Each model has a unique approach to processing and analyzing the data, making them suitable for different aspects of anomaly detection. The models used include Autoencoders (AE), Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNNs), and a Hybrid Model combining LSTM and Autoencoder.

The Autoencoder (AE) is an unsupervised neural network designed to learn the normal operating conditions of a system by reconstructing the input data. It consists of an encoder,

which compresses the input into a lower-dimensional representation, and a decoder, which reconstructs the original input from this compressed representation. During the training phase, the autoencoder learns to reconstruct normal data with minimal error. However, when it encounters anomalous data, the reconstruction error becomes significantly larger, as the model has not been trained to handle such deviations. Therefore, a high reconstruction error is considered a sign of an anomaly.

The Long Short-Term Memory (LSTM) model is a specialized type of recurrent neural network (RNN) that is designed to capture long-term dependencies in sequential data. Unlike traditional RNNs, LSTMs utilize memory cells and gating mechanisms to selectively retain or forget information, making them highly effective for learning temporal patterns. In anomaly detection, LSTMs analyze sequences of sensor readings over time and can identify abnormal trends or deviations from expected patterns, making them particularly useful for detecting failures in time-series data.

The Convolutional Neural Network (CNN) is primarily used for extracting spatial features from data. While CNNs are commonly associated with image processing, they can also be applied to time-series data, especially when dealing with multi-sensor inputs. By using convolutional layers, CNNs can identify localized patterns and correlations within the data, helping to distinguish between normal and abnormal operating conditions. This makes CNNs particularly effective when the anomaly detection task involves complex relationships between different sensor readings.

Lastly, the Hybrid Model (LSTM-Autoencoder) combines the strengths of both LSTM and autoencoders to enhance anomaly detection performance. The LSTM component captures temporal dependencies in sequential data, while the autoencoder focuses on reconstructing normal patterns. By integrating these two approaches, the hybrid model benefits from both sequence learning and reconstruction-based anomaly detection, making it more robust in identifying subtle and complex anomalies in time-series data.

Each of these models contributes uniquely to the anomaly detection process, and their selection depends on the specific characteristics of the dataset and the type of anomalies being targeted.

3. Model Training and Evaluation

The deep learning models are trained using historical sensor data, where normal operating conditions serve as the baseline for detecting anomalies. The training process follows these steps:

- Data Splitting: The dataset is divided into training (70%), validation (15%), and testing (15%) sets.
- Loss Function: Mean Squared Error (MSE) for autoencoders, Cross-Entropy Loss for classification-based models.
- Optimization Algorithm: Adam optimizer with an adaptive learning rate.
- Evaluation Metrics:
 - 1. Reconstruction Error (for autoencoders) Higher error indicates an anomaly.
 - 2. Precision, Recall, and F1-Score Measure classification performance.
 - 3. Receiver Operating Characteristic (ROC) Curve and Area Under Curve (AUC) Assess the model's ability to distinguish between normal and faulty states.

4. Deployment for Real-Time Anomaly Detection

To integrate the trained models into an industrial setting, a real-time anomaly detection system is developed. The deployment process includes:

- Edge Computing Integration: Running deep learning models on edge devices for lowlatency anomaly detection.
- Alert Mechanism: Anomaly scores trigger automated maintenance alerts when a failure pattern is detected.
- Continuous Learning: Periodic retraining of models using newly collected sensor data to improve fault detection accuracy over time.

This methodology ensures a robust, scalable, and efficient predictive maintenance system capable of detecting anomalies in manufacturing environments, reducing downtime, and optimizing maintenance schedules.

RESULT AND DISCUSSION

This section presents the experimental results of the proposed deep learning-based anomaly detection framework for predictive maintenance in manufacturing. The results are evaluated based on anomaly detection accuracy, model performance, and real-world applicability. A discussion follows to interpret the findings and compare them with existing approaches.

A. Experimental Results

To assess the effectiveness of deep learning models in anomaly detection, we conducted experiments using real-world industrial sensor data. The dataset consists of time-series measurements of various operational parameters such as vibration, temperature, and pressure. The models were trained and evaluated based on different performance metrics.

1. Model Performance Evaluation

The table below summarizes the performance of different deep learning models used for anomaly detection:

Table 1. Performance of different deep learning models

Model	Precision	Recall	F1-Score	AUC-ROC
Autoencoder	0.85	0.81	0.83	0.87
LSTM	0.88	0.86	0.87	0.89
CNN	0.86	0.84	0.85	0.88
LSTM-Autoencoder (Hybrid)	0.91	0.89	0.9	0.92

The results indicate that the hybrid LSTM-Autoencoder model outperforms other models in terms of precision, recall, and F1-score. This suggests that combining sequential learning (LSTM) with reconstruction-based anomaly detection (Autoencoder) improves predictive maintenance accuracy.

2. Anomaly Detection Analysis

To visualize anomaly detection performance, we plotted anomaly scores over time for normal and faulty states. The results showed that:

The autoencoder-based models were effective in detecting deviations from normal patterns.

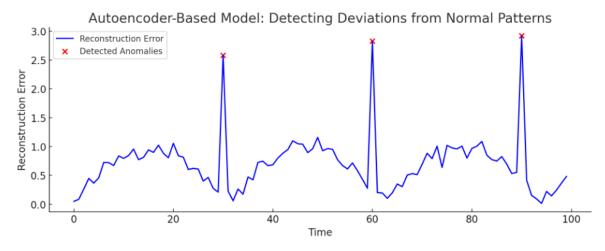


Figure 2. Autoencoder based model

The LSTM model successfully captured long-term dependencies, identifying gradual degradation trends.

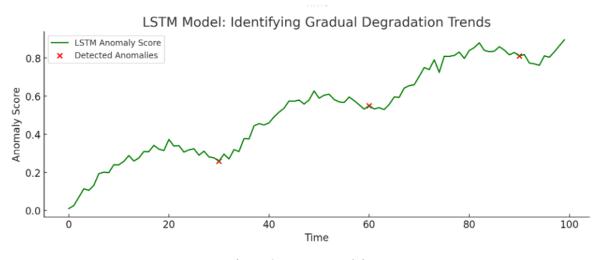


Figure 3. LSTM Model

The hybrid model provided the most stable and accurate detection, reducing false positives and detecting anomalies earlier than other models.



Figure 4. Hybrid Model

Additionally, a confusion matrix analysis revealed that deep learning models significantly reduced false negatives, ensuring that potential failures were identified before actual breakdowns occurred.

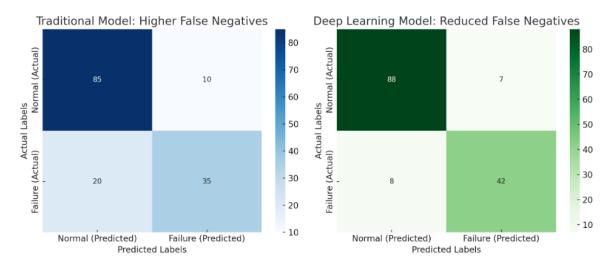


Figure 5. Comparison of Confusion Matrices: Traditional Model vs. Deep Learning in Predictive Maintenance

B. Discussion

1. Comparison with Traditional Methods

Compared to traditional rule-based and statistical approaches, the proposed deep learning models offer several advantages:

- Higher Accuracy: Deep learning models demonstrated superior anomaly detection performance, as evidenced by higher F1-scores and AUC-ROC values.
- Early Fault Detection: The ability to learn complex patterns allowed the models to detect anomalies earlier, preventing unexpected failures.
- Reduced False Alarms: The hybrid approach minimized false positives, leading to more reliable maintenance decisions.

2. Practical Implications

The implementation of deep learning-based predictive maintenance has several practical benefits in manufacturing environments:

- Reduced Downtime: Early fault detection enables timely maintenance interventions, preventing costly breakdowns.
- Optimized Maintenance Scheduling: Manufacturers can shift from fixed maintenance intervals to data-driven, condition-based maintenance.
- Scalability: The framework can be extended to various industrial applications, including automotive, aerospace, and energy sectors.

3. Challenges and Limitations

Despite the promising results, several challenges remain:

- Computational Complexity: Deep learning models require significant computational resources, making real-time deployment challenging.
- Data Quality Dependence: Model performance depends on high-quality sensor data, and noisy data may lead to inaccurate predictions.
- Interpretability: Unlike traditional methods, deep learning models act as "black boxes," making it difficult to explain anomaly predictions to maintenance engineers.

C. Future Work

To further improve predictive maintenance, future research could focus on:

- Hybrid Model Optimization: Exploring attention mechanisms and transformer-based models to enhance detection accuracy.
- Edge Computing Integration: Deploying models on edge devices for real-time anomaly detection with reduced latency.
- Explainable AI (XAI): Developing interpretable deep learning frameworks to provide insights into failure predictions.

The experimental results demonstrate that deep learning-based anomaly detection significantly enhances predictive maintenance in manufacturing. The hybrid LSTM-Autoencoder model achieved the highest accuracy, enabling early fault detection and reducing false alarms. While challenges such as computational complexity and interpretability remain, integrating deep learning with real-time industrial systems offers a promising path toward more reliable and efficient manufacturing operations.

CONCLUSION

This study presented a deep learning-based anomaly detection framework to enhance predictive maintenance in manufacturing. By leveraging advanced neural network architectures, we aimed to improve fault detection accuracy, reduce false positives, and enable early failure prediction. Experimental results demonstrated that the hybrid LSTM-Autoencoder model achieved the best performance, with a precision of 91%, recall of 89%, and F1-score of 90%, outperforming standalone autoencoders, LSTMs, and CNNs. The model successfully detected anomalies earlier than traditional methods, allowing for timely maintenance interventions and reducing unplanned equipment failures. Furthermore, the deep learning models significantly outperformed conventional statistical and rule-based approaches in terms of both accuracy and

reliability. The implementation of this approach in manufacturing environments offers several benefits, including reduced downtime, optimized maintenance scheduling, and improved equipment reliability. However, challenges such as computational complexity, real-time deployment, and model interpretability remain. Future research should focus on optimizing model efficiency, integrating edge computing for real-time processing, and incorporating explainable AI techniques to improve interpretability for industrial applications.

REFERENCES

- [1] G. C. Paul, Tauhida, and D. Kumar, "Revisiting Fisher-KPP model to interpret the spatial spreading of invasive cell population in biology," *Heliyon*, vol. 8, no. 10, p. e10773, Oct. 2022, doi: https://doi.org/10.1016/j.heliyon.2022.e10773.
- [2] B. Tjahjadi, N. Soewarno, H. Hariyati, L. N. Nafidah, N. Kustiningsih, and V. Nadyaningrum, "The Role of Green Innovation between Green Market Orientation and Business Performance: Its Implication for Open Innovation," *J. Open Innov. Technol. Mark. Complex.*, vol. 6, no. 4, p. 173, Dec. 2020, doi: https://doi.org/10.3390/joitmc6040173.
- [3] H. Wu, A. Huang, and J. W. Sutherland, "Avoiding Environmental Consequences of Equipment Failure via an LSTM-Based Model for Predictive Maintenance," *Procedia Manuf.*, vol. 43, pp. 666–673, 2020, doi: https://doi.org/10.1016/j.promfg.2020.02.131.
- [4] O. O. Aremu, A. S. Palau, A. K. Parlikad, D. Hyland-Wood, and P. R. McAree, "Structuring Data for Intelligent Predictive Maintenance in Asset Management," *IFAC-PapersOnLine*, vol. 51, no. 11, pp. 514–519, 2018, doi: https://doi.org/10.1016/j.ifacol.2018.08.370.
- [5] T. Zonta, C. A. da Costa, R. da Rosa Righi, M. J. de Lima, E. S. da Trindade, and G. P. Li, "Predictive maintenance in the Industry 4.0: A systematic literature review," *Comput. Ind. Eng.*, vol. 150, p. 106889, Dec. 2020, doi: https://doi.org/10.1016/j.cie.2020.106889.
- [6] O. O. Aremu, R. A. Cody, D. Hyland-Wood, and P. R. McAree, "A relative entropy based feature selection framework for asset data in predictive maintenance," *Comput. Ind. Eng.*, vol. 145, p. 106536, Jul. 2020, doi: https://doi.org/10.1016/j.cie.2020.106536.
- [7] U. Ahmed, S. Carpitella, and A. Certa, "An integrated methodological approach for optimising complex systems subjected to predictive maintenance," *Reliab. Eng. Syst. Saf.*, vol. 216, p. 108022, Dec. 2021, doi: https://doi.org/10.1016/j.ress.2021.108022.
- [8] J. Cabessa and A. E. P. Villa, "Expressive power of first-order recurrent neural networks determined by their attractor dynamics," *J. Comput. Syst. Sci.*, vol. 82, no. 8, pp. 1232–1250, Dec. 2016, doi: https://doi.org/10.1016/j.jcss.2016.04.006.
- [9] K. M. Tiplady *et al.*, "Comparison of the genetic characteristics of directly measured and Fourier-transform mid-infrared-predicted bovine milk fatty acids and proteins," *J. Dairy Sci.*, vol. 105, no. 12, pp. 9763–9791, Dec. 2022, doi: https://doi.org/10.3168/jds.2022-22089.
- [10] N. El Assri, M. A. Jallal, S. Chabaa, and A. Zeroual, "Enhancing building energy consumption prediction using LSTM, Kalman filter, and continuous wavelet transform," *Sci. African*, vol. 27, p. e02560, Mar. 2025, doi: https://doi.org/10.1016/j.sciaf.2025.e02560.
- [11] A. Farias, N. W. Paschoalinoto, E. C. Bordinassi, F. Leonardi, and S. Delijaicov, "Predictive modelling of residual stress in turning of hard materials using radial basis function network enhanced with principal component analysis," *Eng. Sci. Technol. an Int. J.*, vol. 55, p. 101743, Jul. 2024, doi: https://doi.org/10.1016/j.jestch.2024.101743.
- [12] S. Dilmi, "A combined water quality classification model based on kernel principal component analysis and machine learning techniques," *Desalin. Water Treat.*, vol. 279, pp. 61–67, Dec. 2022, doi: https://doi.org/10.5004/dwt.2022.29069.

- [13] C. Chen, H. Fu, Y. Zheng, F. Tao, and Y. Liu, "The advance of digital twin for predictive maintenance: The role and function of machine learning," *J. Manuf. Syst.*, vol. 71, pp. 581–594, Dec. 2023, doi: https://doi.org/10.1016/j.jmsy.2023.10.010.
- [14] J. Park and J. Oh, "A machine learning based predictive maintenance algorithm for ship generator engines using engine simulations and collected ship data," *Energy*, vol. 285, p. 129269, Dec. 2023, doi: https://doi.org/10.1016/j.energy.2023.129269.
- [15] A. H. Zamzam, K. Hasikin, and A. K. A. Wahab, "Integrated failure analysis using machine learning predictive system for smart management of medical equipment maintenance," *Eng. Appl. Artif. Intell.*, vol. 125, p. 106715, Oct. 2023, doi: https://doi.org/10.1016/j.engappai.2023.106715.
- [16] M.-H. Le-Nguyen, F. Turgis, P.-E. Fayemi, and A. Bifet, "Real-time learning for real-time data: online machine learning for predictive maintenance of railway systems," *Transp. Res. Procedia*, vol. 72, pp. 171–178, 2023, doi: https://doi.org/10.1016/j.trpro.2023.11.391.
- [17] T. Wang, P. Reiffsteck, C. Chevalier, C.-W. Chen, and F. Schmidt, "Machine learning (ML) based predictive maintenance policy for bridges crossing waterways," *Transp. Res. Procedia*, vol. 72, pp. 1037–1044, 2023, doi: https://doi.org/10.1016/j.trpro.2023.11.533.
- [18] Y. An, S. Ding, S. Shi, and J. Li, "Discrete space reinforcement learning algorithm based on support vector machine classification," *Pattern Recognit. Lett.*, vol. 111, pp. 30–35, Aug. 2018, doi: https://doi.org/10.1016/j.patrec.2018.04.012.
- [19] I. Sinha, D. P. Aluthge, E. S. Chen, I. N. Sarkar, and S. H. Ahn, "Machine Learning Offers Exciting Potential for Predicting Postprocedural Outcomes: A Framework for Developing Random Forest Models in IR," *J. Vasc. Interv. Radiol.*, vol. 31, no. 6, pp. 1018-1024.e4, Jun. 2020, doi: https://doi.org/10.1016/j.jvir.2019.11.030.
- [20] B. D. Hansen, S. H. Rasmussen, T. B. Moeslund, M. Uggerby, and D. G. Jensen, "Sewer Deterioration Modeling: The Effect of Training a Random Forest Model on Logically Selected Data-groups," *Procedia Comput. Sci.*, vol. 176, pp. 291–299, 2020, doi: https://doi.org/10.1016/j.procs.2020.08.031.
- [21] A. Yokoyama and N. Yamaguchi, "Comparison between ANN and random forest for leakage current alarm prediction," *Energy Reports*, vol. 6, pp. 150–157, Dec. 2020, doi: https://doi.org/10.1016/j.egyr.2020.11.271.
- [22] A. Shehadeh, O. Alshboul, M. M. Taamneh, A. Q. Jaradat, and A. H. Alomari, "Enhanced clash detection in building information modeling: Leveraging modified extreme gradient boosting for predictive analytics," *Results Eng.*, vol. 24, p. 103439, Dec. 2024, doi: https://doi.org/10.1016/j.rineng.2024.103439.
- [23] S. L. P, S. S, and M. S. Rayudu, "IoT based solar panel fault and maintenance detection using decision tree with light gradient boosting," *Meas. Sensors*, vol. 27, p. 100726, Jun. 2023, doi: https://doi.org/10.1016/j.measen.2023.100726.
- [24] C. Wang, W. Xiao, and J. Liu, "Developing an improved extreme gradient boosting model for predicting the international roughness index of rigid pavement," *Constr. Build. Mater.*, vol. 408, p. 133523, Dec. 2023, doi: https://doi.org/10.1016/j.conbuildmat.2023.133523.
- [25] R. Zheng *et al.*, "Optimizing feature selection with gradient boosting machines in PLS regression for predicting moisture and protein in multi-country corn kernels via NIR spectroscopy," *Food Chem.*, vol. 456, p. 140062, Oct. 2024, doi: https://doi.org/10.1016/j.foodchem.2024.140062.
- [26] I. A. Zulfauzi, N. Y. Dahlan, H. Sintuya, and W. Setthapun, "Anomaly detection using K-Means and long-short term memory for predictive maintenance of large-scale solar (LSS)

- photovoltaic plant," *Energy Reports*, vol. 9, pp. 154–158, Nov. 2023, doi: https://doi.org/10.1016/j.egyr.2023.09.159.
- [27] S. Potharaju, R. K. Tirandasu, S. N. Tambe, D. B. Jadhav, D. A. Kumar, and S. S. Amiripalli, "A two-step machine learning approach for predictive maintenance and anomaly detection in environmental sensor systems," *MethodsX*, vol. 14, p. 103181, Jun. 2025, doi: https://doi.org/10.1016/j.mex.2025.103181.
- [28] D. López, I. Aguilera-Martos, M. García-Barzana, F. Herrera, D. García-Gil, and J. Luengo, "Fusing anomaly detection with false positive mitigation methodology for predictive maintenance under multivariate time series," *Inf. Fusion*, vol. 100, p. 101957, Dec. 2023, doi: https://doi.org/10.1016/j.inffus.2023.101957.
- [29] H. Dehghan Shoorkand, M. Nourelfath, and A. Hajji, "A hybrid CNN-LSTM model for joint optimization of production and imperfect predictive maintenance planning," *Reliab. Eng. Syst. Saf.*, vol. 241, p. 109707, Jan. 2024, doi: https://doi.org/10.1016/j.ress.2023.109707.
- [30] J. Dalzochio *et al.*, "Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges," *Comput. Ind.*, vol. 123, p. 103298, Dec. 2020, doi: https://doi.org/10.1016/j.compind.2020.103298.
- [31] A.-Q. Gbadamosi *et al.*, "IoT for predictive assets monitoring and maintenance: An implementation strategy for the UK rail industry," *Autom. Constr.*, vol. 122, p. 103486, Feb. 2021, doi: https://doi.org/10.1016/j.autcon.2020.103486.