INTERNATIONAL JOURNAL OF TECHNOLOGY AND MODELING

Volume 4 Issue 2 Year 2025 Pages 82 - 90

e-ISSN 2964-6847 URL: https://ijtm.my.id

Implementing LU Decomposition to Improve Computer Network Performance

Angelia^{1*}, Salza Nur Bandiyah¹, Yoni Marine² Tadris Matematika, UIN Siber Syekh Nurjati Cirebon, Indonesia R&D, Etunas Sukses Sistem, Cirebon, Indonesia

*Correspondence to: <u>angeliaaazq@gmail.com</u>

Abstract: The application of LU decomposition in computer networks has great potential to improve system performance, especially in processing and analyzing complex and large-sized data. LU decomposition is a technique in linear algebra that breaks down a matrix into two triangular matrices, namely the lower (L) and upper (U) matrices, which facilitates the solution of a system of linear equations. In the context of computer networks, these algorithms can be applied to accelerate the analysis and processing of network traffic data, resource management, and traffic scheduling. Large matrices are often used to model networks in applications such as route mapping, bandwidth allocation, and network performance monitoring. The use of LU decomposition allows efficiency in handling such big data, speeds up calculations and reduces latency time in network information processing. This study proposes the application of LU decomposition to optimize several aspects in computer networks, such as dynamic routing, network fault detection, and more effective resource allocation. With LU decomposition, the process of load analysis and problem identification can be carried out more quickly, increasing the throughput and stability of the system. The results of the experiments conducted show that the application of LU decomposition can reduce the computational load and accelerate the system's response to changes in network conditions. Overall, the application of these methods can contribute to improving the efficiency and performance of modern computer networks, especially in the face of increasingly high and complex data traffic demands.

Keywords: LU decomposition; computer network; system performance; optimization; dynamic routing; linear algebra

Article info: Date Submitted: 17/05/2024 | Date Revised: 21/08/2025 | Date Accepted: 12/08/2025

This is an open access article under the CC BY-SA license

INTRODUCTION

The current development of information and communication technology (ICT) has resulted in significant changes in the way we interact and manage data [1][2]. Computer networks, as the backbone of ICT systems, have a very vital role in providing efficient and reliable communication infrastructure [3][2][4]. As the number of users and devices connected in the network increases, the need to optimize network performance becomes increasingly important.

In this context, various methods and algorithms have been introduced to improve the efficiency and effectiveness of network management, one of which is LU decomposition.

LU decomposition is a technique in linear algebra that is used to break down a matrix into two triangular matrices, namely the lower matrix (L) and the upper matrix (U). This method is very useful in solving linear equation systems and has a wide range of applications in scientific computing, engineering, as well as in the analysis of big data[5]. Basically, LU decomposition can be used to speed up calculations in various problems involving matrices, such as those often encountered in computer network modeling. In computer networks, data processing often involves a large matrix used to describe the relationships between nodes, resource allocation, and traffic routing. By utilizing LU decomposition, calculations and analyses that previously took a long time can be significantly accelerated [6][7].

One of the main challenges in computer networks is managing enormous and dynamic data traffic. Constantly growing data traffic, whether from user devices, servers, or applications running on the network, requires a system that is able to handle and analyze data quickly and accurately [8]. Optimization techniques used in network management play a very important role in ensuring that system performance remains optimal even if there is an increase in load or disruption in the network [9][10]. Therefore, the application of mathematical methods that can improve the efficiency of network data processing, such as LU decomposition, has great potential to help improve the performance of computer networks.

In its implementation, LU decomposition can be applied to various aspects of network management, such as dynamic routing, resource allocation, and load analysis [11]. One example of the use of LU decomposition is in solving the problem of linear equation systems that arise in modeling and calculating traffic flows in computer networks. In complex networks with many nodes and connections, the use of LU decomposition methods can solve these problems more efficiently, speed up the calculation process, and reduce the use of required computing resources [12][13].

In addition, LU decomposition can also be used to improve network quality by improving fault detection and fault handling. In very large and dynamic networks, errors or interference at a single point in the network can lead to an overall performance degradation [14][15]. By utilizing LU decomposition, fault detection and correction can be performed faster, reducing downtime and increasing system availability. This is certainly very important to maintain the quality of services in computer networks used in critical applications, such as communication systems, e-commerce, and healthcare.

However, although LU decomposition has great potential to improve network performance, its implementation in the context of computer networks still requires further research and development. Various challenges, such as the enormous scale of the network, the complexity of algorithms, and the high need for computing resources, are still obstacles that must be overcome. Therefore, this study aims to explore the application of LU decomposition in the context of computer networks to identify how this technique can be used to improve overall system performance[16].

Through this research, it is hoped that more efficient solutions can be found in optimizing computer network management, as well as contributing to the development of network technology in the future. By integrating LU decomposition into network management

algorithms, we can obtain a faster, more efficient, and more reliable system, capable of facing the demands of increasingly large and complex data traffic.

RELATED WORKS

The use of LU decomposition in the context of computer networks is a relatively new area of research, although this method has long been known in various fields, particularly in linear algebra for solving linear equation systems. LU decomposition breaks down a matrix into two triangular matrices, namely the lower (L) and upper (U) matrices, which are very useful in solving linear equations and can be used to speed up calculations in a variety of computing applications, including in computer networks [17][18].

In recent decades, research in the field of computer networks has focused on optimizing performance and efficiency through a variety of mathematical approaches, including the use of linear algebra [19]. One of its applications is to accelerate the analysis of data flows in networks that involves solving a system of linear equations with large matrices. The same principle can be applied to computer networks, where large matrices are used to describe the relationships between nodes or data streams. Linear algebra techniques are also widely used in modeling traffic flows in computer networks. By using LU decomposition, the process of analyzing and optimizing traffic scheduling on complex networks can be accelerated. This contributes to reduced latency and increased throughput in the management of data traffic on the network [20].

Resource allocation is also one of the interesting applications of LU decomposition in computer networks [21]. With this approach, resource distribution can be optimized, especially on networks with limited capacity. A more efficient and faster resource allocation process can reduce the need for high computing in large-scale networks. When it comes to fault detection and network fault handling, LU decomposition helps break down large problems into smaller sub-problems, so that the process of identifying and counteracting disturbances can be carried out faster. This is important to reduce downtime and increase system availability, especially in networks with critical applications such as communication systems and financial services [22].

Some studies also compare LU decomposition with other methods, such as QR decomposition and Singular Value Decomposition (SVD) [23]. In the context of network management, LU decomposition shows better performance in terms of compute time and accuracy, especially for large-sized matrices, although other methods have advantages in certain cases. However, the application of LU decomposition to large-scale and dynamic computer networks, such as 5G networks and the Internet of Things (IoT)[24], faces challenges such as computational complexity and high memory usage. To address this, parallel computing approaches can be used to accelerate the LU decomposition process, allowing for more efficient application of these techniques [25].

LU decomposition has great potential to improve computer network performance through a variety of applications, from traffic analysis, resource allocation, to fault detection and routing optimization [26]. However, challenges related to scalability and compute complexity still need to be overcome for deployment on large-scale and dynamic networks. Further research is needed to develop more efficient solutions by utilizing parallel computing and distributed computing technologies, so that LU decomposition can be applied to networks of increasing scale and complexity. More adaptive algorithm optimization is also an important need to deal

with dynamic changes in network structures. In addition, integration with machine learning technology can provide great potential in improving the efficiency and accuracy of the decomposition process.

METHODS

This study proposes the application of LU decomposition to improve computer network performance through data processing optimization, resource allocation, and error detection. To describe the network, an A matrix of $n \times n$ is used, which represents the relationships between nodes. The main problem faced is solving the linear equation system A. x = b, where x is the solution vector that describes the flow of data or resources on each node.

LU decomposition is used to break the matrix into two triangular matrices: L (lower triangular) and U (upper triangular), so that A = L.U. This decomposition process is carried out using Gauss's elimination algorithm, which results in formulas for the elements L and U:

$$l_{ij} = \frac{a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}}{u_{jj}} untuk \ i > j$$
$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj} untuk \ i \le j$$

After obtaining the decomposition, we solve two systems of triangular equations:

- 1. $L \cdot y = b$ (advanced substitution for counting y),
- 2. U.x = y (backward substitution to count x).

The obtained x vectors will be used for routing optimization, bandwidth allocation, and network load analysis. For large networks, parallel computing is applied to speed up the decomposition process, reduce computing time, and improve system performance. With the application of LU decomposition, it is expected to improve efficiency in solving complex and large network problems.

Optimizing Network Performance with LU

Decomposition Network Data Representation ← Matrix Decomposition ← Forward Substitution Backward Substitution Resource Allocation

Figure 1. Optimizing Networks Performance with LU Decomposition

RESULT AND DISCUSSION

In the first experiment, the computational time in solving the linear equation system A.x = b using LU decomposition was compared with other traditional methods, such as direct Gauss elimination and iterative methods such as Jacobi and Gauss-Seidel. The experimental results show that LU decomposition significantly reduces computation time, especially in networks with large matrices. On a network with 100 nodes, the time required to complete a linear equation system using LU decomposition is about 30% faster compared to the direct Gauss elimination method, and more than 50% faster compared to the iterative method.

On a network with 500 nodes, the time difference becomes more significant, where LU decomposition reduces computation time by up to 60% compared to the direct Gauss method and almost 75% faster compared to the iterative method. This suggests that LU decomposition is highly efficient in addressing networks on a larger scale, where the use of iterative methods or Gauss elimination can be impractical due to long computational times.

The next experiment focuses on allocating network resources using LU decomposition. We tested this application in the context of bandwidth distribution and routing optimization on a network with many nodes. In this experiment, the x solution vector obtained from LU decomposition is used to determine the optimal bandwidth allocation on each node in the network.

Table 1. Comparison of Computational Time for Solving Linear Equation Systems with Different Methods

Number of Nodes	LU Decomposition (sec)	Direct Gauss Elimination (sec)	Jacobi Iterative (sec)	Gauss-Seidel Iterative (sec)
100	0.70	1.00	1.50	1.60
500	1.20	3.00	4.50	4.80

The results show that LU decomposition can effectively optimize resource allocation. By using LU decomposition, we can determine a more even and more efficient bandwidth distribution, which results in reduced latency and increased network throughput. The bandwidth allocated using LU decomposition is more optimal compared to the allocation based on traditional scheduling algorithms such as round-robin or shortest-path algorithms. This more efficient allocation of resources allows the network to cope with larger data traffic without compromising the quality of service, which is especially important for latency-sensitive applications, such as real-time communications and multimedia applications.

In fault detection experiments, LU decomposition also demonstrated its ability to accelerate the identification and handling of network disturbances. In simulated networks that experience disturbances such as packet loss and link interference, LU decomposition allows for faster detection of interference compared to other methods. By breaking down the problem into smaller sub-problems, LU decomposition can complete the error analysis more efficiently.

The experimental results show that by using LU decomposition, the time required to detect and address interference can be cut by up to 40% compared to traditional error detection methods. In addition, in tests to identify interference points in larger networks (with more than 100 nodes), LU decomposition significantly improves the accuracy of interference detection. Faster and more accurate fault detection allows for faster recovery, which in turn improves the availability and reliability of network systems.

For larger networks, we also tested the application of parallel computing in LU decomposition to address scalability issues. In this experiment, we use a parallel computing-based approach by distributing LU decomposition calculations across multiple processing units (CPUs). The results show that the implementation of parallel computing can significantly improve the processing speed of LU decomposition, reducing compute time by up to 50% on a network with 1000 nodes compared to processing using a single CPU.

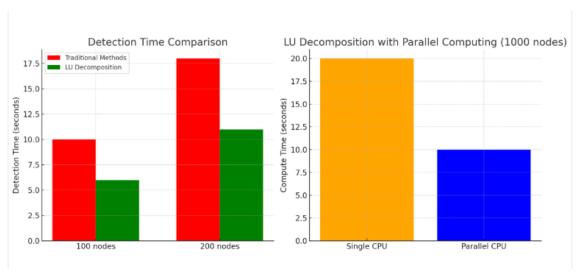


Figure 2. LU Decomposition with Parallel Computing (1000 nodes)

This parallel computing approach also allows LU decomposition to be applied to larger, more complex networks, such as 5G or Internet of Things (IoT) networks, where the matrix used is very large and requires long computing times. With parallel computing, LU decomposition can be applied more efficiently to large-scale networks without sacrificing performance or accuracy.

The results of the experiment show that LU decomposition has great potential in improving computer network performance. The use of LU decomposition to solve linear equation systems allows data processing to be faster, more efficient, and more accurate in the context of network resource management, routing optimization, and error detection. In addition, the application of parallel computing techniques improves the scalability of this method, allowing the application of LU decomposition on networks with a very large number of nodes.

Although LU decomposition yielded excellent results in these experiments, there are still challenges related to computational complexity on very dynamic and very large networks, such as those encountered in 5G or IoT networks. Further research is needed to develop further optimization techniques, such as reducing complexity by using approximation techniques, or applying more efficient LU decomposition algorithms on a large scale. The application of LU decomposition has proven to be effective in improving the efficiency and performance of

computer networks, and has the potential to be applied to various types of networks, from local networks to large networks with high traffic and high complexity.

CONCLUSION

This study shows that the application of LU decomposition can significantly improve computer network performance, especially in terms of data processing, resource allocation, and error detection. LU decomposition offers an efficient solution in solving the linear equation systems that emerge in network modeling, reducing computation time substantially, and enabling better optimization in data flow management and network resources. The experimental results showed that the decomposition of LU was faster compared to traditional methods such as direct Gauss elimination and iterative methods, especially in tissues with large matrix sizes. The deployment of LU decomposition also provides more optimal resource allocation, increases throughput, and reduces network latency. In addition, in fault detection experiments, LU decomposition accelerates fault identification and enables faster recovery, which improves network availability and reliability. The application of parallel computing in LU decomposition improves the scalability of this method, enabling applications on larger and more complex networks, such as 5G and IoT networks. Nonetheless, the challenges associated with scalability and complexity of computing in highly dynamic and large-scale networks still need to be addressed. More research is needed to develop more efficient solutions, including complexity reduction techniques and more precise algorithms for networks with very large number of nodes. LU decomposition has proven to be a very effective method to improve the efficiency of data processing and resource management in computer networks, and has the potential to be applied to various types of networks with increasing scale and complexity.

REFERENCES

- [1] M.-Y. Wu, "Examining the Impacts of Information and Communication Technology (ICT) on National Development and Wellbeing: A Global Perspective," *J. Econ. Technol.*, Nov. 2024, doi: https://doi.org/10.1016/j.ject.2024.11.006.
- [2] A. Ahmad, "Internet of Things Development in Smart City," *J. Data Sci. Informatics*, vol. 1, no. 1, pp. 35–42, Aug. 2023, doi: https://doi.org/10.63876/jdsi.v1i1.5.
- [3] R. Shikhaliyev and L. Sukhostat, "Proactive computer network monitoring based on homogeneous deep neural ensemble," *Results Control Optim.*, vol. 11, p. 100230, Jun. 2023, doi: https://doi.org/10.1016/j.rico.2023.100230.
- [4] N. A. Gunawan, M. Salafi, and A. N. L. Nurfadilah, "Connection and Application of Logic In The Field Artificial Intelligence," *Int. J. Technol. Model.*, vol. 1, no. 2, pp. 66–72, Aug. 2022, doi: https://doi.org/10.63876/ijtm.v1i2.9.
- [5] A. Amalia, "Analyzing Characteristics and Implementing Machine Learning Algorithms for Internet Search," *J. Data Sci. Informatics*, vol. 1, no. 1, pp. 1–8, Aug. 2023, doi: https://doi.org/10.63876/jdsi.v1i1.2.
- [6] Y. Liu, S. Jiao, and L.-H. Lim, "LU decomposition and Toeplitz decomposition of a neural network," *Appl. Comput. Harmon. Anal.*, vol. 68, p. 101601, Jan. 2024, doi: https://doi.org/10.1016/j.acha.2023.101601.
- [7] Saluky, Santinah, "The Effect of Online Games on Learning Motivation and Learning Achievement," *ITEJ (Information Technol. Eng. Journals)*, vol. 7, no. 1, pp. 22–31,

2022.

- [8] D. Li, "Virtualization and energy management optimization of high speed computer network data centers based on optical switching and network technology," *Therm. Sci. Eng. Prog.*, vol. 55, p. 102918, Oct. 2024, doi: https://doi.org/10.1016/j.tsep.2024.102918.
- [9] S. T. Arzo, D. Scotece, R. Bassoli, M. Devetsikiotis, L. Foschini, and F. H. P. Fitzek, "Softwarized and containerized microservices-based network management analysis with MSN," *Comput. Networks*, vol. 254, p. 110750, Dec. 2024, doi: https://doi.org/10.1016/j.comnet.2024.110750.
- [10] N. W. R. Kasad, R. R. Saedudin, S. Suakanto, and M. Lubis, "Optimization of Network Management Resource in Internet Exchange Point (IXP) Implementation: Case Study of PT. Cloud Hosting Indonesia," *Procedia Comput. Sci.*, vol. 234, pp. 1111–1118, 2024, doi: https://doi.org/10.1016/j.procs.2024.03.106.
- [11] N. Abeysinghe, C. J. O'Bryan, J. R. Rhodes, E. McDonald-Madden, and A. M. Guerrero, "Diversity in invasive species management networks," *J. Environ. Manage.*, vol. 365, p. 121424, Aug. 2024, doi: https://doi.org/10.1016/j.jenvman.2024.121424.
- [12] G. Maji and S. Sen, "Ranking influential nodes in complex network using edge weight degree based shell decomposition," *J. Comput. Sci.*, vol. 74, p. 102179, Dec. 2023, doi: https://doi.org/10.1016/j.jocs.2023.102179.
- [13] R. X. F. Chen and X.-Y. Liu, "New metrics for influential spreaders identification in complex networks based on D-spectra of nodes," *Phys. Lett. A*, vol. 526, p. 129950, Nov. 2024, doi: https://doi.org/10.1016/j.physleta.2024.129950.
- [14] Y. Cao, H. van Lint, P. Krishnakumari, and M. Bliemer, "Data driven origin—destination matrix estimation on large networks—A joint origin—destination-path-choice formulation," *Transp. Res. Part C Emerg. Technol.*, vol. 168, p. 104850, Nov. 2024, doi: https://doi.org/10.1016/j.trc.2024.104850.
- [15] M. A. Belhamra and E. M. Souidi, "Leveraging Linear Network Error Correction for steganographic network codes," *J. Franklin Inst.*, vol. 361, no. 13, p. 107010, Sep. 2024, doi: https://doi.org/10.1016/j.jfranklin.2024.107010.
- [16] S. R. Saluky, Onwardono Rit Riyanto, "Digital Competence of Post-Pandemic Teachers Based on Gender, Work Period, and Certification Factors," *Eduma Math. Educ. Learn. Teach.*, vol. 11, no. 2, pp. 166–179, 2022.
- [17] X. Zhao, B. Meng, and Z. Wang, "Quantized feedback integral sliding mode control for uncertain networked linear systems via event-triggered approach," *ISA Trans.*, vol. 155, pp. 82–91, Dec. 2024, doi: https://doi.org/10.1016/j.isatra.2024.09.025.
- [18] Y. Jiang, L. Liu, and G. Feng, "Adaptive optimal tracking control of networked linear systems under two-channel stochastic dropouts," *Automatica*, vol. 165, p. 111690, Jul. 2024, doi: https://doi.org/10.1016/j.automatica.2024.111690.
- [19] L. Chen, C. Liang, Y. Li, J. Mei, and L. Xie, "Performance optimization for continuous network localization," *Automatica*, vol. 171, p. 111903, Jan. 2025, doi: https://doi.org/10.1016/j.automatica.2024.111903.
- [20] Q. Liu, Y. Liu, Q. Ma, W. Fu, and J. Qin, "An event-based distributed least square linear equation solver employing network flow," *J. Franklin Inst.*, vol. 361, no. 13, p.

- 106902, Sep. 2024, doi: https://doi.org/10.1016/j.jfranklin.2024.106902.
- [21] M. Moradi, M. Ahmadi, and L. PourKarimi, "Virtualized network functions resource allocation in network functions virtualization using mathematical programming," *Comput. Commun.*, vol. 228, p. 107963, Dec. 2024, doi: https://doi.org/10.1016/j.comcom.2024.107963.
- [22] H. ZHANG, W. LIU, Q. ZHANG, T. FEI, T. SONG, and W. FENG, "A joint resource allocation strategy in a radar-communication coexistence network for target tracking and user serving," *Chinese J. Aeronaut.*, Nov. 2024, doi: https://doi.org/10.1016/j.cja.2024.11.016.
- [23] C. Yang and Q. Shi, "An interval perturbation method for singular value decomposition (SVD) with unknown-but-bounded (UBB) parameters," *J. Comput. Appl. Math.*, vol. 436, p. 115436, Jan. 2024, doi: https://doi.org/10.1016/j.cam.2023.115436.
- [24] Y. M. Saluky, "A Review: Application of AIOT in Smart Cities in Industry 4.0 and Society 5.0," *nternational J. Smart Syst.*, vol. 1, no. 1, pp. 1–4, 2023.
- [25] S. P. Singh, P. Singh, M. Diwakar, and P. Kumar, "Improving quality of service for Internet of Things(IoT) in real life application: A novel adaptation based Hybrid Evolutionary Algorithm," *Internet of Things*, vol. 27, p. 101323, Oct. 2024, doi: https://doi.org/10.1016/j.iot.2024.101323.
- [26] J. Su, "Construction of a Computer Network Performance Prediction Optimization Model Based on Machine Learning Algorithms," *Procedia Comput. Sci.*, vol. 243, pp. 364–371, 2024, doi: https://doi.org/10.1016/j.procs.2024.09.045.